
To the University Council:

The Dissertation Committee for Mihai Cosmin Lintean certifies that this is
the final approved version of the following electronic dissertation: “Measuring
Semantic Similarity: Representations and Methods.”

Vasile Rus, Ph.D.
Major Professor

We have read this dissertation and
recommend its acceptance:

Arthur Graesser, Ph.D.

King-Ip (David) Lin, Ph.D.

Vinhthuy Phan, Ph.D.

Accepted for the Graduate Council:

Karen D. Weddle-West, Ph.D.
Vice Provost for Graduate Programs

MEASURING SEMANTIC SIMILARITY:

REPRESENTATIONS AND METHODS

by

Mihai Cosmin Lintean

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Computer Science

The University of Memphis

August 2011

Copyright 2011 Mihai Cosmin Lintean

All rights reserved

ii

DEDICATION

To family and friends ...

... especially to my dear parents and my little brother.

iii

ACKNOWLEDGEMENTS

My deepest appreciation goes to my advisor, Dr. Vasile Rus, for his patience

with me and for giving me the right input and support to keep me going. People

say writing a dissertation is not an easy thing. For me, it was one of the most

difficult things I had to do in my life so far. I do not think there are words which

can express the amount of gratitude that I have for my advisor, without whom

none of this would have been possible. Thank you, Vasile. You have been a

wonderful advisor and a great mentor. I will never forget all that you and your

family did for me.

I would also like to thank a few other people who had a direct positive

influence on me and my dissertation: Dr. Art Graesser, whom I admire very

much, Dr. Mark Conley, for his useful advice on writing, Dr. David Lin, for being

such a wonderful tutor and professor, and Zhiqiang Cai, for being a great

colleague and friend.

iv

ABSTRACT

Lintean, Mihai Cosmin. Ph.D. The University of Memphis. August, 2011.
Measuring Semantic Similarity: Representations and Methods. Major Professor:
Vasile Rus, Ph.D.

This dissertation investigates and proposes ways to quantify and measure

semantic similarity between texts. The general approach is to rely on linguistic

information at various levels, including lexical, lexico-semantic, and syntactic.

The approach starts by mapping texts onto structured representations that include

lexical, lexico-semantic, and syntactic information. The representation is then

used as input to methods designed to measure the semantic similarity between

texts based on the available linguistic information. While world knowledge is

needed to properly assess semantic similarity of texts, in our approach world

knowledge is not used, which is a weakness of it. We limit ourselves to answering

the question of how successfully one can measure the semantic similarity of texts

using just linguistic information. The lexical information in the original texts is

retained by using the words in the corresponding representations of the texts.

Syntactic information is encoded using dependency relations trees, which

represent explicitly the syntactic relations between words. Word-level semantic

information is relatively encoded through the use of semantic similarity measures

like WordNet Similarity or explicitly encoded using vectorial representations such

as Latent Semantic Analysis (LSA). Several methods are being studied to compare

the representations, ranging from simple lexical overlap, to more complex

methods such as comparing semantic representations in vector spaces as well as

syntactic structures. Furthermore, a few powerful kernel models are proposed to

use in combination with Support Vector Machine (SVM) classifiers for the case in

which the semantic similarity problem is modeled as a classification task.

v

CONTENTS

List of Tables ix

List of Figures xi

List of Abbreviations xii

1 Introduction 1
1.1 Introduction . 1
1.2 Goal . 6
1.3 Semantic Similarity: From Words to Texts 7
1.4 Challenges of Measuring Semantic Similarity at Sentence Level . . . 12
1.5 The Proposed Framework for Semantic Similarity Assessment 14

1.5.1 A Semantic Representation of Texts 14
1.5.2 Comparing the Semantic Representations 16
1.5.3 Computing Semantic Similarity 17

1.6 Datasets for Semantic Similarity Assessment Evaluation 18
1.6.1 The Microsoft Research Paraphrase Corpus (MSR) 18
1.6.2 The User Language Paraphrase Corpus (ULPC) 20
1.6.3 The Recognizing Textual Entailment Corpus (RTE) 22

1.7 Applications of Semantic Similarity Measures 23
1.8 Contributions . 27
1.9 A Look Ahead . 30

2 The Meaning Representation 33
2.1 Introduction . 33
2.2 A Closer Look to Text-To-Text Semantic Similarity 33
2.3 Semantic Interpretation versus Semantic Mapping 39
2.4 The Semantic Representation . 40

2.4.1 Word Senses in WordNet . 43
2.4.2 Using LSA to represent the meaning of words 45
2.4.3 Syntactic Dependency Trees versus Phrase-based Trees 46

2.5 Extracting the Semantic Representation 47
2.5.1 Preprocessing: Lexical Analysis 47
2.5.2 Extracting word-based semantic information 48
2.5.3 Extracting Dependency Relations 49

2.6 Experimental Setup on Extracting the Semantic Representation 50

3 Lexical-based Similarity Methods 54

vi

3.1 Introduction . 54
3.2 Study Case: A Simple Way of Computing Semantic Similarity 55
3.3 Similarity Methods based on Lexical Token Overlap 59
3.4 Weighting Schemas for Lexical Token Overlap Methods 64
3.5 Symmetric versus Asymmetric Semantic Similarity 67
3.6 More Options on Lexical Overlap Normalization 68
3.7 From Quantitative to Qualitative Assessment 69

3.7.1 Calculating Similarity Thresholds for Qualitative Assessment 69
3.8 Performance Results on Lexical Token-based Overlap Metrics 71
3.9 Computing IDF values from Wikipedia 80

3.9.1 Data Preprocessing . 82
3.9.2 Statistical results . 86
3.9.3 Implementation . 90

4 Word-to-Word Semantics 91
4.1 Introduction . 91
4.2 WordNet Similarity . 95

4.2.1 WordNet Similarity Measures 97
4.2.2 WordNet Relatedness Measures 100

4.3 From Words to Concepts: Solving Word Sense Disambiguation 102
4.4 Preliminary Results with WordNet Relatedness Measures on ULPC . 103

4.4.1 Methods . 104
4.4.2 Results . 105

4.5 Extending Lexical Methods with Word Semantics 107
4.6 Performance Results on Greedy Methods based on Word Semantics . 109
4.7 Performance Results on Optimal Methods based on Word Semantics 114
4.8 Latent Semantic Analysis . 117

4.8.1 Weighting in LSA . 118
4.8.2 LSA-based Similarity of Texts 120
4.8.3 Prior Knowledge Activation Paragraphs 123
4.8.4 Experiments and Results . 124

5 Syntactic Dependency Relations 129
5.1 Distinctions from Previous Work . 130
5.2 Approach . 131
5.3 Summary of Results . 139
5.4 Using IDF-based weighting on Dependency Relations 143
5.5 Discussions . 145
5.6 Importance of WordNet Similarity for Dependency Relations 145

6 Kernel-based Methods 147
6.1 Support Vector Machines . 148

6.1.1 Kernel Functions for SVMs . 150

vii

6.1.2 The VC dimensions of SVMs: overfitting vs. generalization . . 152
6.1.3 SVMs for NLP related tasks . 155

6.2 Kernels for Semantic Similarity Assessment 157
6.2.1 Lexical Kernels of Similarity and Dissimilarity 159
6.2.2 Dependency-based kernels . 163
6.2.3 Experiments and Results . 164

7 Conclusions 171
7.1 Previous Work . 172
7.2 Future Directions . 177

Bibliography 179

viii

LIST OF TABLES

1.1 Example of ideal and student-generated paragraphs in MetaTutor. . . 25

3.1 Lexical methods on MSR, with OpenNLP parsing and Average-Norm 74
3.2 Lexical methods on MSR, with Stanford parsing and Average-Norm . 74
3.3 Lexical methods on MSR, with Stanford parsing and Max-Norm . . . 76
3.4 Lexical methods on ULPC, with Average-Norm 77
3.5 Lexical methods on RTE, with asymmetric normalization (A→ B) . . 78
3.6 Lexical methods on RTE, with OpenNLP parsing and non-standard

normalization . 79
3.7 Top document frequency values for words that begin with letter/digit 86

4.1 Computing optimal word pairing for W2W similarity metrics 94
4.2 Correlations among Methods 1 and 2, human judgments, LSA, and

Entailer. 106
4.3 W2W Semantic methods on MSR with OpenNLP (P.B.C.U.N.N.

method, with Average-Norm and greedy matching) 112
4.4 W2W Semantic methods on MSR with Stanford, (W.B.I.U.N.F.

method, with Max-Norm and greedy matching) 112
4.5 W2W Semantic methods on ULPC with OpenNLP, (W.W.I.U.N.N.

method, with Average-Norm and greedy matching) 113
4.6 W2W Semantic methods on RTE with Stanford, (W.W.I.U.N.N.

method, with asymmetric normalization, A→ B and greedy match-
ing) . 114

4.7 W2W Semantic methods on MSR with optimal matching 116
4.8 W2W Semantic methods on ULPC with optimal matching 116
4.9 LSA results on the MSR dataset. 126
4.10 LSA results on the iSTART/ULPC dataset. 126
4.11 LSA results on the MetaTutor/PKA dataset 126
4.12 Weighting scheme combinations corresponding to best results for

each dataset. 127

5.1 Performance and comparison of different approaches on the MSR
Paraphrase Corpus. 140

5.2 Accuracy results for different WordNet metrics with optimum test
threshold values . 142

5.3 Performance scores when using IDF values from Wikipedia. 144

6.1 Lexical Kernels on MSR, with OpenNLP parsing and raw lexical forms166
6.2 Lexical Kernels on MSR, with OpenNLP parsing and base lexical

forms . 167

ix

6.3 Lexical Kernels on MSR, with OpenNLP parsing and part-of-speech
forms . 167

6.4 Lexical Kernels on ULPC, with OpenNLP parsing 168
6.5 Dependency Kernels on MSR, with Stanford parsing 169

7.1 Performance results of previous work done on MSR 177

x

LIST OF FIGURES

1.1 Word level: Semantic Similarity vs. Semantic Relatedness 9
1.2 A Normalized Word-to-Word Semantic Similarity Metric 10
1.3 A Normalized Text-to-Text Semantic Similarity Metric 12
1.4 Computing Textual Semantic Similarity - Major Steps 14

2.1 Example of a Phrase-based Syntactic Tree 38
2.2 Example of a Dependency Tree . 38

3.1 Number of distinct words in Wikipedia grouped on the first character 87
3.2 Zipfian distribution on the most frequent 1000 words in Wikipedia

collection . 88
3.3 Zipfian distribution on the H(n) function for first 500 points 89
3.4 Heap’s Law distribution on the Wikipedia collection (for the first 200

million words) . 90

4.1 A snapshot of the WordNet taxonomy for nouns. 96

5.1 Example of dependency trees and sets of paired and non-paired de-
pendencies. 133

5.2 Architecture of the system. 135

6.1 Two-class separation hyperplane in a bidimensional space 149

xi

LIST OF ABBREVIATIONS

HTML HyperText Markup Language
IR Information Retrieval
IDF Inverse Document Frequency
ITS Intelligent Tutoring System
LSA Latent Semantic Analysis
LDA Latent Dirichlet Allocation
MSR Microsoft Research (Paraphrase) Corpus
NLP Natural Language Processing
PKA Prior Knowledge Activation
POS Part-of-speech
RTE Recognizing Textual Entailnment
QA Question Answering
SVM Support Vector Machine
T2T Text-to-text
TF Term Frequency
W2W Word-to-word
WN WordNet
ULPC User Language Paraphrase Corpus
XML Extensible Markup Language

xii

CHAPTER 1

INTRODUCTION

1.1. Introduction

This dissertation addresses the challenging task of measuring semantic similarity

between texts written in natural language. The task consists of qualitatively and

quantitatively assessing how close in meaning two texts are. The length of the

texts on which similarity is assessed, can vary from single words to phrases and

sentences, to paragraphs and even entire documents.

Measuring semantic similarity is a central problem in Natural Language

Processing (NLP) due to its importance to a variety of applications ranging from

web-page retrieval (Park, Ra, and Jang 2005), question answering (Ibrahim, Katz,

and Lin 2003; Rinaldi et al. 2003), word sense disambiguation (Patwardhan,

Banerjee, and Pedersen 2003), text classification (Lodhi et al. 2002) and clustering,

to natural language generation (Iordanskaja, Kittredge, and Polguere 1991) and

conversational agent/dialogue system in intelligent virtual tutoring (Graesser et

al. 2005; McNamara, Boonthum, and Millis 2007). For example, in Intelligent

Tutoring Systems (ITSs), students are sometimes required to respond in free form

natural language to specific tasks given by the virtual tutor. These free form

answers must then be automatically analyzed for accuracy. The typical approach

is to compare how similar they are in relation to a list of ideal answers written in

natural language, usually handcrafted by human experts. As another example, in

Information Retrieval (IR) systems, the search queries created by users are in the

form of small sets of keywords or phrases that may include content words such as

1

verbs or nouns along with some function words such as prepositions. The IR

system is supposed to return documents that are semantically similar to the query.

Assessing the semantic similarity of texts is a rather general problem, which

can take many forms. Some of the most commonly studied in the literature are the

tasks on qualitatively assessing the existence of semantic similarity relations

between texts. In particular, research focused on two major types of semantic

similarity relations: paraphrase and entailment. In the following, we exemplify and

discuss on these relations, and then later on, in Section 1.7, we will present some

practical applications where, being able to detect such relations can be very

useful.

The goal of paraphrase identification is to determine whether two given texts

convey the same meaning. Consider the following pair of two sentences from the

Microsoft Research (MSR) Paraphrase Corpus (Dolan, Quirk, and Brockett 2004),

in which Text A is labeled as a paraphrase of Text B and vice versa:

Text A: Ricky Clemons’ brief, troubled Missouri basketball career is over.

Text B: Missouri kicked Ricky Clemons off its team, ending his troubled

career there.

Both texts convey the fact that Ricky Clemons had a troubled career at

Missouri and that now it is over (or it ended). At a closer look, we notice that each

sentence also contains extra information, which is not present in the other. Text A

mentions that Ricky Clemons’ career was brief and that he played basketball

during his career. Text B mentions how Ricky’s career ended: he was kicked off its

team. The annotators of this example decided that, in most part, the two

sentences convey the same message and the differences are minor enough to be

2

ignored. It is obvious that this decision is subjective, and the reader can agree or

disagree with the annotators’ decision to label the two sentences as paraphrases.

Although paraphrase identification has been defined qualitatively in the form

of a binary classification task consisting of detecting the presence or absence of

semantic similarity, which is somehow understandable given the vagueness of the

definition of a paraphrase, we redefine it as a quantitative task of measuring

semantic similarity between the corresponding texts. We quantify the paraphrase

relations on a normalized scale from 0 to 1, where 1 means that the two input

texts are semantically equivalent, while 0 means that they are not. Alternatively,

the paraphrase relation can be quantified on a scale from -1 to 1, where 1 means

that the two sentences share the same meaning and nothing else (i.e., ”John heard

Mary running” versus ”Mary was heard by John while she was running”), while -1

means the sentences have opposite or contradictory meanings (i.e., ”I ate John’s

apple” versus ”I didn’t eat John’s apple”). Sometimes, the semantic similarity scale

does not require a normalization factor. Supposedly, we can define a semantic

similarity metric around a borderline value, which is usually 0, where all the

values below the borderline state that the input samples are semantically

different, while all values above the borderline state that the input samples are

semantically close. The further away from the borderline these values are, the

more confident the statements are. This idea of a borderline threshold can be

applied to the 0-1 normalization range allowing a binary classification approach

to paraphrase identification. The threshold can be used to classify all instances as

paraphrases, when the quantitative similarity score exceeds the threshold value,

or non-paraphrases when the similarity score is below the threshold.

Another example of qualitatively assessing the semantic similarity between

texts is the task of recognizing textual entailment. In this task, the challenge is to

3

determine whether one text is (or is not) entailed from another. One example of

such an entailment relation is given by the following pair of sentences extracted

from the Recognizing Textual Entailment (Dagan, Glickman, and Magnini 2005,

RTE) corpus, where T is considered the entailing ”Text” and H the entailed

”Hypothesis”:

T: There are also tanneries, sawmills, textile mills, food-processing plants,

breweries, and a film industry in the city.

H: Movies are also made in the city.

We say that T entails H if the meaning of H can be inferred from the meaning

of T (Dagan, Glickman, and Magnini 2005). In this example, the entailed

Hypothesis can be easily construed from the entailed Text. The Hypothesis

contains no extra information relative to the Text. This is very different from the

paraphrase example given earlier, where both texts contained additional

information. In the case of entailment, the fact that the Text contains extra

information does not affect the relation of entailment. The particular case of

entailment in which there is no extra information in the Text with respect to the

Hypothesis, the Text-Hypothesis pair are in a paraphrase relation. That is,

paraphrase can be viewed as bidirectional entailment between two input

instances, T and H, where T entails H and H entails T (Rus et al. 2008a).

Textual entailment is strongly related to the relation of logical entailment. In

current literature we often see a tendency to intermingle these two notions of

textual and logical entailment. In their survey of paraphrasing and textual

entailment methods, Androutsopoulos and Malakasiotis (2010) describe textual

entailment in terms of logical entailment, and paraphrasing as a particular case of

bidirectional entailment relation. We argue that textual paraphrasing and

4

entailment should have looser definitions since they rely on natural language

which is often ambiguous. Minor inconsistencies, differences or extraneous

information should be permitted as long as the main message stays the same.

Therefore, in this dissertation we regard textual entailment as a semantic relation

between two texts which does not necessarily follow strict logical thinking to

support or reject the assumed inferences in the texts. For example, in current stage

of this research, it is not expected from a system that does textual entailment

recognition to support arithmetic reasoning, which would help to correctly

classify the following pair or sentences as a positive instance of textual entailment:

T: Jimmy has 2 apples and 3 oranges in his basket.

H: Jimmy has 5 pieces of fruit in his basket.

Given the loose definitions of paraphrase and entailment relations, an

important question to ask is with respect to how much extra information in one

text (or Hypothesis for the case of entailment) can be ignored in order to detect

the presence of a paraphrase (or entailment) relation. Defining a quantitative

semantic similarity metric first could help find an answer by measuring the level

of extra information that could be ignored.

There are other qualitative semantic relations that pertain to the general task

of semantic similarity assessment. One such example is to detect the elaboration of

a text (McCarthy et al. 2008), where text B is said to be an elaboration of text A if B

elaborates on the topic presented by A, i.e., adds more details about the topic that

is discussed. In some cases, elaboration can be viewed as reverse entailment, and

vice versa. We will explore in this proposal automatic methods to assess the

semantic similarity relations of paraphrasing and entailment.

5

The task of assessment or recognition of semantic similarity relations, such as

paraphrase or entailment, is closely related to two other tasks: the extraction and

generation of pairs (or groups) of texts in which such semantic relations are

reflected. As noted in (Androutsopoulos and Malakasiotis 2010), the distinction

between these three tasks is not always clear in the literature. Paraphrase or

entailment extraction (Barzilay and Lee 2003; Brockett and Dolan 2005; Madnani

and Dorr 2010) is the task of extracting from various sources fragments of texts

that are in a paraphrase or entailment relation. For instance, paraphrase relations

could be extracted from texts containing redundant semantic content such as

news articles from different media sources, which cover the same topic, or from

multiple English translations, made by different translators, of the same text, e.g.,

the Bible. In the case of paraphrase or entailment generation one input text is given

and the task is to generate one or more texts which are semantically related to the

given text. As a concrete example of paraphrase generation, we mention the work

of McKeown (1983) which describes the paraphrase component for a natural

language question-answering system. In this system, the user’s questions are

paraphrased and presented to the user for validation, before the questions are

evaluated and answered.

1.2. Goal

The overarching goal of this dissertation is to explore, investigate, and propose

ways to quantify and measure semantic similarity between texts. The general

approach is to rely on linguistic information at various levels, including lexical,

lexico-semantic, and syntactic. The approach starts by mapping texts onto

structured representations that include lexical, lexico-semantic, and syntactic

information. The representation is then used as input to methods designed to

6

measure the semantic similarity between texts based on the available linguistic

information. While world knowledge is needed to properly assess semantic

similarity of texts, in our approach world knowledge is not used, which is a

weakness of it. We limit ourselves to answering the question of how successfully

one can measure the semantic similarity of texts using just linguistic information.

The lexical information in the original texts is retained by using the words in the

corresponding representations of the texts. Syntactic information is encoded

using dependency relations trees, which represent explicitly the syntactic

relations between words. Word-level semantic information is relatively encoded

through the use of semantic similarity measures like WordNet Similarity or

explicitly encoded using vectorial representations such as Latent Semantic

Analysis (LSA). We plan to study several methods to compare the

representations, ranging from simple lexical overlap, to more complex methods

such as comparing semantic representations in vector spaces as well as syntactic

structures. Furthermore, we propose a few kernel models which can be used in

combination with Support Vector Machine (SVM) classifiers for the case in which

the semantic similarity problem is modeled as a classification task. Although

SVM classifiers are mostly used in binary classifications, there are ways to extend

and normalize their output such that it can be used as a quantitative measure of

similarity instead of a simple binary decision.

1.3. Semantic Similarity: From Words to Texts

The concept of semantic similarity is a rather fuzzy concept in the literature. To

better understand semantic similarity, it is important to analyze the related

concept of semantic relatedness. Semantic similarity and relatedness were used

interchangeably at word level(Pedersen, Patwardhan, and Michelizzi 2004;

7

Mihalcea, Corley, and Strapparava 2006), which may confuse some readers. While

semantic similarity is a close-connection between the meaning of two words or

texts, semantic relatedness refers to remote semantic relations. In the following,

we explain the difference between these two concepts, starting at word level and

then moving on to larger texts, e.g., sentences or paragraphs.

Finding the semantic similarity between two words can be defined in terms of

how interchangeable the two words are in context. In other words, the following

question can be asked: what is the extent to which two words can be used

interchangeably in a text without changing its meaning? Synonymy and

hyponymy are such examples of semantic similarity relations at word level

(Jurafsky and Martin 2002). Two words are in a synonymy relation if they can be

interchanged in some (but not necessarily all) contexts (e.g., confused and

bewildered). For hyponymy, one word is the hyponym of another if its meaning is

an instance of one of the broader meaning of the other word (e.g., dog is hyponym

of animal). Synonymy is a symmetric relation (bidirectional), while hyponymy is

asymmetric (unidirectional). The inverse relation for hyponymy is called

hypernymy (i.e., animal is hypernym to dog).

Semantic relatedness refers to words being used in the same context without

being interchangeable. Semantic relatedness can be regarded as a remote semantic

relation between words. For instance, dog and mutt are similar while dog and bark

are related. Other known word-level semantic relations are antonymy, describing

opposite meanings (i.e., hot vs. cold), and meronymy, when one word meaning

describes a part of the concept defined by the other word (i.e., nucleus is part of

eukaryotic-cell).

There is another, more operational, difference between semantic similarity

and semantic relatedness, at word level. For semantic similarity the words we

8

Semantic Similarity

Semantic Relatedness

Synonimy
Hypernimy

Meronimy

Antonymy

Figure 1.1
Word level: Semantic Similarity vs. Semantic Relatedness

compare are required to have the same part of speech, while for semantic

relatedness the words can actually have different parts-of-speech (i.e.,

compete-verb vs. competition-noun, food-noun vs. edible-adjective). Figure 1.1

depicts our view on the distinction between the two measures of semantic

similarity and relatedness at the word level. Therefore, we view the notion of

semantic similarity at word level as nothing more than a particular case of

semantic relatedness.

We now convert this view into a normalized metric of semantic similarity

between words. We define a metric WordSim with values ranging from 0 to 1,

measuring the semantic relationship between two given words, WA and WB, in

the following way:

• a value equal or close to 0 defines the degree to which WA and WB are

unrelated. The lower this value is, the higher the confidence that the words

are unrelated. A WordSim(WA, WB) = 0 value means that the two words are

completely unrelated, and there is no correlation between the usage of the

two in the written or spoken language of the words.

9

0 Trel Tsim 1

roof -
riv

er

dog-bark

cat -
anim

al

hot -
cold

dog-m
utt

agree - c
oncur

drin
k - m

edia

Figure 1.2
A Normalized Word-to-Word Semantic Similarity Metric

• a value equal or slightly greater than a threshold value, Trel, defines the

degree to which WA and WB are semantically related, but not similar in

meaning. The higher this value is, the higher the degree of relatedness

between the words.

• a value equal or greater than a threshold value, Tsim, defines the degree to

which WA and WB are semantically similar, or share, more or less, the same

meaning. The higher this value is, the higher the degree of semantic

similarity between the words. A WordSim(WA, WB) = 1 value means that

the meaning of the words is exactly the same, and therefore these words

can be used interchangeably in any context whatsoever.

Figure 1.2 gives a graphical representation of our previously defined metric,

with some representative examples. Our definition of the semantic similarity at

word-based level is inspired by recent work on word-to-word semantic similarity

metrics (Hirst and St-Onge 1998; Banerjee and Pedersen 2003; Patwardhan 2003;

Pedersen, Patwardhan, and Michelizzi 2004; Landauer et al. 2007). One issue with

these word-based similarity metrics is that finding the boundaries necessary to

decide word relatedness or similarity can be very challenging as the boundaries

can be different for different tasks and metrics. Chapter 4 details the

word-to-word similarity metrics.

10

The just described rubric for scoring relatedness does not apply to words that

are opposite in meaning (e.g. hot vs cold). Obviously they are not semantically

similar, but there is however a strong semantic relation between them. A new

rubric should be defined in this case on a normalized scale between -1 and 1,

where values equal or close to -1 reflect that the two words are in a relation of

antonymy (i.e., agree vs. disagree), while values equal or close to 1 reflect a relation

of synonymy (i.e., agree vs. concur). The research work presented in this

dissertation will focus only on the rubric.

The above definition of semantic similarity and relatedness can be extended

to longer texts. In general, we say that two texts are similar if they convey more or

less the same meaning. Examples of textual relations that can be regarded as

semantic similarity relations include the relations of paraphrase. The two texts

would be related if they are remotely related, e.g., discussing different aspects of

same event or topic. Examples of semantically related texts are the relation

between a question and its answer or the relation of causality between two texts

describing the cause and effect of some phenomenon or events, where one event

occurs as a consequence of the other.

Similarly, as for the word-based level, we can define a normalized semantic

similarity metric between two texts. The length of the texts can range from

syntactic phrases or full sentences to paragraphs or documents. Figure 1.3 depicts

this metric, showing some representative examples of relations between two

sentences or paragraphs.

This dissertation explores the concepts of semantic similarity and relatedness

between texts the size of a sentence only. Some of the methods that we study

make use of the semantic similarity and relatedness at word level.

11

0 1

Topic
or E

vent R
elated

Elaboratio
n, E

ntailm
ent

Sim
ila

r o
pinions on same topic

Semantic
Equivalence

Paraphrasing

Diffe
rent, u

nrelated topics

Figure 1.3
A Normalized Text-to-Text Semantic Similarity Metric

1.4. Challenges of Measuring Semantic Similarity at Sentence Level

When one analyzes the problem of semantic similarity between two sentences at a

more conscientious level, it becomes obvious that the problem is extremely

challenging, even for humans. More times than expected, the context of the given

text instances being assessed is not well defined and the topic described by the

input sentences is too vague to correctly establish whether there is a semantic

similarity relation between them or not. Consider the following two sentences:

”John bought an apple.” and ”John purchased an apple”. Since buy and purchase

represent the same action, we can say that the two sentences are semantically

similar. But what if there is the case where the apple in the first sentence is a fruit,

while the apple in the second sentence is actually a computer? So, because not

enough information about the sense of the word ”apple” has been given, we can

easily give a faulty answer to an apparently very simple problem. The sense of

the words could have been easily induced, if we had f being used, e.g., ”While

passing by a grocery store, John bought an apple” and ”He needed a new computer, one

that was faster and more reliable than his old laptop, so John purchased an apple.” This

example suggests that, before going into the task of comparing the two sentences,

we first need to determine the exact sense of each word that is used in the text.

12

This step is known in the NLP research community as the task of word sense

disambiguation, which is also a challenging and highly researched task

(Patwardhan, Banerjee, and Pedersen 2003).

But even when we know the exact senses of the words, the task of, for

instance, paraphrase identification does not become any easier. Consider the

following example:

Text A: That information was first reported in today’s edition of NY Times.

Text B: The information was first printed yesterday in the NY Times.

In this example, we assume the sentences refer to the same news and the same

newspaper. To correctly identify the presence of a paraphrase relation, we need to

make some inferences and to have knowledge about the newspaper business. The

critical information we need to know is that the NY Times newspaper usually

prints the paper one day before distributing it. Once we know this additional

information, we can correctly infer that the two sentences are indeed paraphrases.

Having general world knowledge as well as domain specific knowledge, e.g.,

newspaper business, and being able to make logical deductions or inferences

based on that knowledge is a very challenging task, in fact one of the most

challenging goals of the broader Artificial Intelligence research area.

We finish our debate on the difficulty of measuring semantic similarity by

restating one of the previous examples given in the introductory section, about

the need to have arithmetic reasoning, on some particular cases of paraphrasing

or entailment. Consider the following two sentences: ”John bought 3 apples and 2

pears.” and ”John bought 5 pieces of fruit”. Being able to reason with numbers and

arithmetic operations, one could potentially consider these sentences as being

paraphrases, in a more loosened context, or being in a unidirectional relation of

13

Text A Representation A

Representation B

Set of Features Compute Similarity Score

Text B

Figure 1.4
Computing Textual Semantic Similarity - Major Steps

entailment, from the first sentence to the second. In our investigation, we assume

that we do not have access to the large context of the given input sentence, nor

that we have a computational resources encoding general world knowledge. As

already mentioned, we limit ourselves at exploring the role of linguistic

information on measuring similarity and relatedness between texts the size of a

sentence and using these measurements to establish the existence of semantic

similarity relations such as paraphrase or entailment.

1.5. The Proposed Framework for Semantic Similarity Assessment

To measure the semantic similarity, we propose a three phase process. In the first

phase, we convert the input texts into semantic representations which contain all

the necessary information needed for the next steps. In the second phase, we

extract sets of features by comparing various lexico-semantic items, which are

contained in the semantic representations of the two texts. The extracted features

are then used to compute a semantic similarity score between the initial given

texts. Figure 1.4 graphically summarizes the above mentioned.

1.5.1 A Semantic Representation of Texts

For the semantic representations (SR) of the texts we propose the following

formalism:

14

SR: (Word, Lemma, POS, Specificity,WN-SENSE|LSA-Vector,

(< − : deptype : depmod > | < dephead : deptype : − >)+)+

The above structured representation includes items that correspond to lexical,

semantic, and syntactic elements in the original text. That is, the original text is

regarded as an ordered list of lexical tokens, which are mostly represented by

words. A token has several attributes (most of these make sense when the token

represents a word in the text): the initial lexical form of the token, the lemma form

of the word, the word’s part-of-speech (POS), the weighted specificity of the word

(words that are specifics to certain topics and rather uncommon in general, are

given more importance by this value), a semantic representation for the sense of

the word - either through WordNet’s semantic senses or the LSA’s vectorial

representations - and finally, a list of syntactic dependencies with the other words

in the same sentence. Here is a concrete example1 of how to map a given short

sentence into the representation which was formalized above. Given the

following sentence: ”Peter went to Seattle last Thursday.”, we represent this

sentence as follows:

[(Word=Peter, lemma=peter, POS=NNP, WNSENSE=1,Deps=(went:nsubj:-)),

(went, go, VBP, 1, (-:nsubj:peter; -:prep to:seattle; -:tmod:thursday)),

(to, to, N, 1, ()),

(Seattle, seattle, NNP, 1, (went:prep to:-)),

(last, last, JJ, 1, (thursday:amod:-)),

(Thursday, thursday, NNP, 1, (went:tmod:-; -:amod:last))]

(., ., PERIOD, 1, ())]

1 We omit to show the weighted specificity of words in this example, since these
are float values that depend a lot on the type of weighting that is used.

15

More details on this representation are further given in section 2.4. The main

idea behind this representation is that we want to have easy access to any

pertainable lexical, syntactic and semantic information about the text. The

representation needs to allow for easy use of simple string matching operations

that can be performed in the next steps. All of the information stored in such a

representation can be automatically derived using state-of-the-art methods which

in late years have become mature enough for practical use. The performance score

of these tools are fairly good, assuring us that the data they produce is accurate

enough for our task. Section 2.5 gives more details on this data extraction phase.

1.5.2 Comparing the Semantic Representations

Once the input texts have been converted into their appropriate semantic

representations, we can proceed with comparing these representations of texts

and extract meaningful features which will help in computing the similarity

metric. Comparing two texts by their semantic representations can be done in

many ways. In the simplest case, one can measure the overlapping score of lexical

tokens between the two texts. For example, suppose we want to compare the

sentence given in previous subsection (A) with another sentence (B), which

basically conveys the same message but with more details:

A. Peter went to Seattle last Thursday.

B. Last Thursday, my friend Peter flew to Seattle for a business meeting.

Sentence A has 7 lexical tokens (including the ending period), while sentence

B has 14 lexical tokens (including the comma after Thursday). If we compare the

original lexical form of all tokens and we ignore case (i.e., upper case letters) we

find that there are 6 common tokens (including the ending period). We

16

normalized this number by dividing it to the average number of tokens in a

sentence (i.e., (7 + 14)/2 = 10.5) and we get a simple lexical-based similarity score

of 0.57, between the two input sentences.

To compare two input texts through lexical overlap metrics, we can do this at

unigram level, as shown before, or at bigram level, to account for some syntactic

relations that can appear between consecutive words. In addition, tokens can be

compared by using their word form or the lemma form, the POS or their

associated semantic-based vectorial representation (e.g., LSA vectors). Also, to

compare two tokens, we can employ various semantic similarity measures at

word level. To account for the syntactic aspect, we can compare the lists of the

extracted syntactic dependencies, or their corresponding syntactic trees. In the

following chapters we present experiments on many assortments of these

comparing approaches.

1.5.3 Computing Semantic Similarity

Based on the set of features extracted, various semantic similarity measures can

be computed. Function based models, such as logistic regression, or support

vector machines, can be trained from expert-labeled datasets (gold standards) that

are specific to a particular task of semantic similarity. In most cases that we study

here, the output of the trained models is a qualitative judgment on the type of

relationship between two input texts. We will describe some novel and promising

ideas on how to use kernel methods to model the classification functions. All

these proposed methods will be further detailed in the following chapters.

17

1.6. Datasets for Semantic Similarity Assessment Evaluation

To evaluate our proposed framework for semantic similarity assessment and all

the associated methods for comparing two texts, which will be defined and

detailed in the following chapters of this dissertation, we have experimented with

three representative datasets, two for paraphrase identification (the MSR and the

ULPC corpora) and one for the entailment recognition (the RTE corpus). In the

remainder of this section we will describe these three datasets.

1.6.1 The Microsoft Research Paraphrase Corpus (MSR)

Microsoft Research Paraphrase (MSR) Corpus (Dolan, Quirk, and Brockett 2004)

is a standard dataset for evaluating approaches to paraphrase identification.

Although the corpus has some limitations, which will be pointed out next, it has

been so far the largest publicly available annotated paraphrase corpus and has

been used in most of the recent studies that addressed the problem of paraphrase

identification. The corpus consists of 5801 sentence pairs collected from newswire

articles, 3900 of which were labeled as paraphrases by human annotators. The

average length for sentences in this corpus is of 22 words. Furthermore, the

corpus is divided into a training set (4076 sentences of which 2753, or 67%, are

true paraphrases), and a test set (1725 pairs of which 1147, or 66%, are true

paraphrases).

There are several critiques about MSR corpus. First, MSR has too much word

overlap (spawning form the method used to collect the data set) and less syntactic

diversity. Therefore, the corpus cannot be used to learn paraphrase syntactic

patterns (Weeds, Weir, and Keller 2005; Zhang and Patrick 2005). Given the high

lexical overlap, a good strategy would be to focus on differences among the

sentences in a pair. It should be noted that the lexical overlap is recognized by the

18

creators of the corpus (Dolan, Quirk, and Brockett 2004) which indicate a .70

measure of overlap (of an unspecified form). The T-F split in both training and

testing is quite similar though (67-33%).

Second, the annotations by humans were made on slightly modified sentences

which are different from the original sentences publicly released. For instance,

humans were asked to ignore all numbers and simply replace them with a generic

token, e.g., MONEY for monetary values, and make judgments accordingly. This

discrepancy between what humans used and what systems take as input

complicates the task as some decisions are counterintuitive which means

someone trying to define a set of meaningful features by inspecting a subset of

examples may be puzzled by some of the expert decisions. For instance, the pair

below was judged as a paraphrase although the percentages as well as the indices

(Standard & Poor versus Nasdaq) are quite different.

Text A:The broader Standard & Poors 500 Index .SPX gained 3 points, or

0.39 percent, at 924.

Text B:The technology-laced Nasdaq Composite Index < :IXIC > rose 6

points, or 0.41 percent, to 1,498.

Because of such instances in the corpus, where sentences are intentionally

labeled as paraphrases even when the small dissimilarities are extremely

important, e.g., different numbers, the evaluation becomes a bit trickier. Here is

another example of a pair of sentences from the corpus in which the small

difference in both the numbers and the anonymous stocks in Text A are not

considered important enough for the annotators to judge the two sentences as

non-paraphrases.

19

Text A: The stock rose $2.11, or about 11 percent, to close on Friday at

$21.51 on the New York Stock Exchange.

Text B: PG&E Corp. shares jumped $1.63 or 8 percent to $21.03 on the

New York Stock Exchange on Friday.

This makes the corpus more challenging and the fully-automated solutions

look less powerful than they would on a paraphrase corpus that followed the

standard interpretation of what a paraphrase is, i.e., the two texts have exactly the

same meaning. Nevertheless, the MSR corpus is the largest available and most

widely used, and we will also use it in this work as the main dataset for

evaluating proposed approaches.

1.6.2 The User Language Paraphrase Corpus (ULPC)

The User Language Paraphrase Corpus (ULPC; (McCarthy and McNamara 2009))

comprises annotations for all three types of relations exemplified in the

introductory section of this chapter (paraphrase, entailment and elaboration), as

opposed to MSR which only focus on one relation. The corpus was created from

students inputs collected during iSTART (Interactive Strategy Training for Active

Reading and Thinking) sessions. ISTART (McNamara, Levinstein, and Boonthum

2004; McNamara, Boonthum, and Millis 2007) is an ITS system that provides

students with reading strategy training. As part of the training, students are

asked to self-explain a given text, called the textbase, using a number of reading

strategies, such as paraphrasing. The corpus contains 1998 such pairs between a

textbase and the students’ self-explanations. The pairs are evaluated on 10

dimensions including entailment and paraphrase quality but also on other quality

dimensions such as garbage, i.e., incomprehensible input. These other quality

dimensions are not text-to-text relations but rather characteristics of a single text,

20

i.e., the writing quality of the student response. An example of a textbase (T) and

self-explanation (SE) in iStart that is encoded in the ULPC corpus is provided

below (the SE is pasted as typed by the student):

T: During vigorous exercise, the heat generated by working muscles can

increase total heat production in the body markedly.

SE: alot of excercise can make your body warmer.

The texts in the MSR and RTE data sets, collected from news articles written

by professionals, are grammatically correct with almost no spelling errors and,

importantly, with many named entities, e.g., Mexico. On the other hand, ULPC

texts represent high school students attempts to self-explain textbases. The

student paraphrases are less grammatical, with a relatively large number of

misspellings, and no named entities. These characteristics of the ULPCs corpus

make it special in some sense when compared to the other corpora. For our

current task, we decided that we will refrain from dealing with any misspelled or

mistyped texts and so we used a modified version of the initial corpus which has

been cleaned and corrected by linguistic experts (i.e., terms like oxygon or th were

replaced with their corresponding correct words, oxygen and the). The average

length of the sentences in this corpus is about 21 words. To evaluate our methods

we focus on one particular dimension called ”Paraphrase Quality bin”. This

dimension measures the paraphrase quality between the target-sentence and the

student response on a binary scale, similar to the scale used in MSR. From a total

of 1998 pairs about 55% were classified by experts as being paraphrases. For our

experiments we will split this corpus in two parts: 1499 instances (75%) will be

used for training, and 499 (25%) instances for testing.

21

1.6.3 The Recognizing Textual Entailment Corpus (RTE)

Textual entailment recognition started as a generic task being proposed by the

PASCAL2 European research group, to measure the semantic textual inference or

entailment between texts. As was discussed in the previous chapter, textual

entailment differs from textual paraphrasing in being an asymmetric relation

from one text, called the entailing ”Text” to another text, called the entailed

”Hypothesis”. The first PASCAL Recognizing Textual Entailment Challenge

(RTE-1) took place between Summer of 2004 to Spring of 2005, and it provided the

first benchmark for the entailment task. Since then, there had been 5 more RTE

Challenge Tasks; first two (RTE-2 and RTE-3) were supported by the PASCAL

group still, while the last three (RTE-4, RTE-5, RTE-6) got support from the Text

Analysis Conference (TAC) under the National Institute of Standards and

Technology (NIST). In our work we will study the relation of entailment on the

corpora of first three RTE Challenge tasks: RTE-1 contains 567 pairs of sentences

for the training (or development) data, and 800 pairs for the test data; while

RTE-2 contains 800 instance pairs for training data and 800 for testing data; and

similarly, RTE-3. The average length of the entailed texts in all the three corpora is

31 words, while the average length of the entailed hypotheses is 10 words.

Similarly to MSR, the instances are annotated with a binary class, TRUE if there is

relation of textual entailment from the first sentence to the second, or FALSE

otherwise. The distribution of these classes on all three corpora is even (50%). For

our experiments we will use RTE-1, RTE-2 and the training part of RTE-3 as our

learning and development corpus, while the testing part of RTE-3 will be used as

2 PASCAL - Pattern Analysis, Statistical Modeling and Computational Learning

22

the testing corpus. Therefore, out of all 4657 RTE instances that we use, 3767

(82%) are used for training, while 800 (17%) are used for testing.

1.7. Applications of Semantic Similarity Measures

A well-defined text-to-text semantic similarity metric can have many useful

applications. The variety of its applicability depends of course on the

particularities of the metric. This section gives some examples where using

semantic similarity metrics can help in solving various practical problems and

tasks.

The concept of semantic similarity can be understood in many ways,

depending on the purpose to which one wants to use it. The most obvious case

where such a metric can be used is to analyze whether two given texts tell the

same story or not. But that is not always the case. Maybe one text summarizes,

infers or concludes some particular facts from the other text. To give a more

concrete example, consider a system that analyzes, organizes and summarizes

news articles coming from different sources. A useful semantic similarity metric

will be one that can tell whether two blocks of text are referring to the same event.

They do not necessarily need to relay the same message. Maybe the two articles

that enclose these two blocks of text portray conflicting information about the

same event. What is of interest here is if the application can somehow recognize

that the articles are referring to the same event or topic, and then apply further

functions to summarize, combine or compare these two articles.

In Question Answering (QA), multiple answers that are paraphrases of or

semantically similar to each other could be considered as evidence for the

correctness of the answer (Ibrahim, Katz, and Lin 2003; Rinaldi et al. 2003). For

QA systems that use databases of manually generated answers to predefined sets

23

of questions, one can use semantic similarity metrics to determine if a new posed

question is a paraphrase to one of the questions stored in the database, for which

the answer is known. One of such systems is the Falcon system (Harabagiu et al.

2000), which make use of an ad-hoc module capable of caching answers and

detecting question similarity.

In Intelligent Tutoring Systems (Graesser et al. 2005; McNamara, Boonthum,

and Millis 2007), the ability to support complex natural language-based dialogue

between the virtual tutor and the learner is a crucial component of such systems.

In a complex dialogue, the student is encouraged to ask questions and also

respond with free natural language answers to the tutor’s deep inquiries (e.g.,

conceptual physics questions) about the student’s current level of knowledge.

Given these types of free form answers from students, the virtual tutor is

expected to validate these answers in one form or the other. A common technique

used here is to compare the input with sets of predefined answers that a student

could give. These answers may be correct or may be some common

misconceptions about the topic referred in the question. The idea is to select the

predefined answer that is the most semantically similar with the input and has a

similarity degree above a certain threshold. The tutor assumes that this answer is

an ideal representation of the input, and will give proper feedback according to

the characteristics of the predefined answer: if the predefined answer is correct,

the feedback will be positive, if the answer is a misconception, the feedback will

be negative but accompanied by constructive explanations in order to repair the

discovered learner’s misconceptions. A common metric used in Intelligent

Tutoring Systems, such as AutoTutor (Graesser et al. 2005) is Latent Semantic

Analysis which will be discussed in more detail in Chapter 4.

24

Table 1.1
Example of ideal and student-generated paragraphs in MetaTutor.

Type Paragraph
Ideal The heart is a muscular organ that is responsible for pumping blood

throughout the body through the blood vessels. The heart, blood,
and blood vessels work together to carry oxygen and nutrients to
organs and muscles throughout the body and carry away waste
products. The circulatory system works with the system that makes
hormones (the endocrine system), which controls our heart rate and
other body functions. Blood carries oxygen from the lungs to all the
other organs in the body. Metabolism occurs when blood delivers
nutrients, such as proteins, fats, and carbohydrates, to our body.

Student The circulatory system is composed of blood, arteries, veins, capil-
laries, and the heart. Its purpose is to supply blood flow and oxy-
gen to the body and to pick up waste (carbon dioxide). Blood is
either oxygen rich or poor. Oxygen poor blood needs to return to
the lungs from the heart to get more oxygen. Once blood has gener-
ated through the body it’s oxygen is depleted. Needs to get back to
the heart so it can get back to lungs.

In a related task, automatic detection of student mental models in MetaTutor

(Azevedo et al. 2008), an intelligent tutoring system that teaches students

self-regulatory skills, a challenging task is deciding how similar a

student-generated paragraph is to an ideal, expert-generated paragraph. The

student-generated paragraphs are obtained from the prior knowledge activation

(PKA) meta-cognitive activity in MetaTutor when students are prompted to write

a paragraph outlining everything they know about a given learning goal, e.g.,

learn about the human circulatory system. Table 1.1 shows an example of an ideal

paragraph compared to a student-generated paragraph. In this case, the task is to

assess how semantically similar the two given paragraphs are.

Semantic similarity can also be useful to help in the detection of plagiarism.

Given a paper written by a certain researcher named Bill and a set of articles

25

published by other researchers but closely related to the topic presented by Bill,

the goal is to measure how much of Bill’s work is original and how much is

”inspired” from other people’s work. Obviously we do not expect to have a

system that will be able to solve the whole plagiarism detection task, but having a

properly defined similarity metric could assist and warn the raters of Bill’s paper,

for potential plagiarisms issues to other particularly specified articles.

A recent recommendation to the field of Software Testing is to use NLP-based

techniques in detecting duplicate bug reports (Rus et al. 2010). Defect reports are

detailed descriptions, made in natural language format, for problems detected in

a software product. The reports are stored in a defect database. As it turns out, not

all defect reports in this database are unique because often the same problem is

discovered by different testers and therefore reported independently. Reports that

describe the same underlying problem are called duplicate reports, or dupes.

Duplicates are numerous in bug databases and automated tools to automatically

assess the semantic similarity of defect reports are highly desirable, to help

decrease the time these defects are analyzed and then properly fixed.

Text-to-text semantic similarity metrics can also be very helpful for clustering

texts that are similar in meaning. Clustering texts is an important task for many

applications in data mining and information retrieval, such as intelligent retrieval

of textual data that is relevant to a given topic of interest. Much research has been

done in data mining for text clustering, some using bag-of-words approach

(Baeza-Yates and Ribeiro-Neto 1999), other using more complex approaches using

ontologies of words (Jing et al. 2006) extracted from well-known lexical databases,

such as WordNet (Miller 1995). Through our proposed framework, we hope to

help and expand the research in this area by offering a wide range of text-to-text

26

semantic similarity metrics, which can be used as distance measures in various

methods of text clustering.

1.8. Contributions

There are several contributions put forward by the current work. First, we make

an attempt to formalize the problem of semantic similarity and present it in a

broader perspective. Second, according to this formalism, we propose a

framework upon which various methods can be developed in order to solve

particular problems of semantic similarity. Third, several methods are proposed

and validated through experiments.

A lot of research has been done on this topic, particularly on two problems of

textual semantic similarity: paraphrase identification and textual entailment. As

previously mentioned in the introductory section of this chapter, the work of

Androutsopoulos and Malakasiotis (Androutsopoulos and Malakasiotis 2010)

provides a good overview on these two problems, although not complete, since

new related work is published every year. Some researchers have worked on

paraphrase identification (Zhang and Patrick 2005; Fernando and Stevenson 2008;

Rus et al. 2008a; Das and Smith 2009), some on textual entailment (Dagan,

Glickman, and Magnini 2005; Rus et al. 2008b), while others searched for generic

solutions to solve both problems (Corley and Mihalcea 2005; Finch, Hwang, and

Sumita 2005; Wu 2005; Zhang and Patrick 2005; Qiu, Kan, and Chua 2006;

Ramage, Rafferty, and Manning 2009; Heilman and Smith 2010). There is also a lot

of variety and ingenuity in the methods that were proposed. In regard to

corpus-based training, some are fully supervised (Zhang and Patrick 2005; Qiu,

Kan, and Chua 2006), while some are only partially supervised (Wu 2005; Rus et

al. 2008b). Some methods rely on word-based semantic similarity measures

27

(Corley and Mihalcea 2005; Fernando and Stevenson 2008), some on syntactic

information, such as dependencies (Wan et al. 2006; Heilman and Smith 2010), or

verb predicate forms (Qiu, Kan, and Chua 2006). Some approaches rely heavily on

classifiers (mostly SVMs) to learn from features based on machine translation

evaluation techniques (Finch, Hwang, and Sumita 2005), quasi-synchronous

dependency grammars (Das and Smith 2009), or surface string similarity with

synonyms and dependency overlap (Malakasiotis 2009).

A few researchers, including the author, argue that the nature of the available

corpora for the task of semantic similarity analysis, i.e., MSR (Dolan, Quirk, and

Brockett 2004), is debatable in terms of how representative their instances are for

particular tasks of textual semantic similarity (Weeds, Weir, and Keller 2005;

Zhang and Patrick 2005). For this reason, we believe it is a rather difficult task to

declare one clear winner from the different approaches proposed, based purely on

the performance numbers. One could argue that, to a certain extent, each one of

these approaches is valid enough, if the theoretical reasoning upon which they

are based is properly motivated from a linguistic point of view, and their reported

performance scores are at least competitive. This dissertation advances the idea of

a novel approach based on a general framework to cover a wide spectrum of

textual semantic similarity problems and with a good theoretical foundation that

will make it fairly acceptable in the research community. We hope this framework

will offer an environment in which various levels of linguistic information can be

used to provide a more rigorous comparison between different approaches, which

rely on various combinations of the available linguistic information. Based on this

framework, we propose, explore, and validate through rigorous testing a suite of

methods to the task of semantic similarity, with various degrees of sophistication.

The most promising methods proposed are found to offer competitive results

28

with other state-of-the-art solutions. We validate our methods across two of the

most studied relations of semantic similarity, paraphrase and entailment.

As previously noted, previous attempts to address both problems of

paraphrasing and textual entailment recognition have been reported before, but

no one, to the best of our knowledge, have addressed the problem of semantic

similarity between texts with a general framework that permits the development

of a suite of methods which vary in their degree of sophistication. Heilman and

Smith (2010) describe Tree Edit Models, which represent sequences of tree

transformations to model pairs of semantically related sentences. These models

are presented as viable approaches to the tasks of recognizing entailment,

paraphrase identification, and answer selection for question answering. Ramage,

Rafferty and Manning (2009) suggest using local relatedness information

extracted from random walks over graphs constructed from underlying to compute

the text semantic similarity. They tested this approach on paraphrase and

entailment relations at sentence level. On the same tasks, Finch, Hwang, and

Sumita (2005) propose using machine translation evaluation scores (such as

BLEU, NIST, WER or PER) to measure semantic equivalence at sentence level. In

another paper, McCarthy et al. (2008) analyze lexico-syntactic approaches for the

textual relations of entailment, paraphrase and, elaboration, which are

hand-coded into a corpus of self-explanations taken from iStart, an Intelligent

Tutoring System (McNamara, Boonthum, and Millis 2007).

This current work makes an attempt to expand much of the previous work

done, by proposing an overarching, flexible framework for computing text-to-text

similarity that ranges from simple overlap to statistical semantic similarity, i.e.,

LSA, to similarity in highly-dimensional spaces, i.e., SVM. In addition, we present

29

a systematic study of the different levels at which one can compute semantic

similarity between two given, short lengthened texts.

In summary, this dissertation proposes and studies several methods and

metrics to compute various semantic similarity values, in order to solve

entailment and paraphrase recognition problems. Evaluations of these methods

on common data test sets are presented. We start with a suite of simple

word-based methods to measure semantic similarity between two sentences.

These methods are basic extensions of some word-to-word similarity metrics

(WordNet similarity) and, although they are simple methods, they behave

surprisingly well on the available data sets. We then introduce dependency

relations and explore how they can be used to measure text-to-text similarity. A

somewhat different approach using vector-representations of texts, based on

Latent Semantic Analysis (LSA), is also investigated. We contribute to the LSA

related research by analyzing the effects of using various weighting schemes to

compute similarity scores between texts. One particularly interesting weighting

scheme that we will experiment with LSA is the inverse document frequency

scheme computed from Wikipedia, currently the largest online and freely

available collection of documents. Furthermore, we present a novel and ambitious

approach of using word-based and dependency-based kernels to measure and

classify semantic similarities. Our experiments with these kernel-based methods

show promising and competitive results when compared to other methods.

1.9. A Look Ahead

The current proposal is organized in six major parts and a concluding section.

Thus far, the introductory chapter presented the research problem of measuring

the semantic similarity between texts, and outlined the main ideas being

30

proposed by this work and its contributions. A general framework is then

described, for solving the current research problem, along with three main

datasets, which will be used to evaluate the proposed approach. In the end, this

first chapter listed several applications or tasks where such a framework could

become useful. Chapter 2 further details the research problem with some more

representative examples. Next, the meaning or data representation proposed in

Chapter 1 is described in finer lines. This second chapter then talks about how to

automatically derive such representations from input texts given in raw form, as

part of a preprocessing phase.

The next four chapters propose and study several methods and metrics, to

measure the semantic similarity between texts, in order to solve the particular

cases of entailment and paraphrase recognition problems. Evaluations of these

methods on standard datasets are also presented at the end of each chapter.

Chapter 3 presents the lexical methods, which are based on computing the lexical

overlap between two input texts, in order to measure the semantic similarity

between them. We extend these methods with various weighting schemes for

each lexical token, which can be computed either locally, from the current input

texts, or globally, from a much larger collections of texts. One particular type of

global weight that we use is based on the inverse document frequency (IDF)

values. The process for computing these values from Wikipedia, the largest

collection of online documents on general knowledge facts available at this time,

is fully detailed in Section 3.9. On the next fourth chapter, we will further extend

the lexical methods with some word-to-word semantics. We study two types of

such metrics computed at the word level, one based on the study of manually

defined relations between semantic concepts that are being stored in WordNet - a

lexical database and taxonomy of concepts, while the other is based on latent

31

semantic analysis (LSA), a vectorial representation for the meaning of words,

which became recently popular and was successfully used in some Intelligent

Tutoring Systems (Graesser et al. 2005; Dessus 2009). We also present in this

chapter how to apply some smart word-based weighting schemes when

calculating the semantic similarity metrics between words. We contribute to the

LSA related research by analyzing the effects of using various weighting schemes

to compute similarity scores between texts. Chapter 5 introduces dependency

relations and how they can be used to measure text-to-text similarity. Chapter 6

presents a novel and ambitious approach of using word-based and

dependency-based kernels to measure and classify semantic similarities.

The dissertation ends with a concluding chapter where, along with some

concluding remarks and future directions on the work being presented here, it

also describes in more detail some of the previous work done by other researchers

on the task of semantic similarity assessment, and will further compare their

evaluation results with the best ones obtained by our proposed research methods.

32

CHAPTER 2

THE MEANING REPRESENTATION

2.1. Introduction

In the introductory chapter, we briefly described the task of measuring semantic

similarity between texts and its applications; we defined what we understand by

text-to-text semantic similarity and how we intend to measure it. We also

suggested a three phase approach to assessing similarity which starts with the

input texts being mapped onto a semantic representation where lexical, syntactic,

and semantic information is retained. The resulted representations can then be

used in the subsequent phase in which second-order features are being extracted

and which reflect various similarities and even dissimilarities between the target

input texts. In the last phase, these features are used to compute a semantic

similarity score between the two input texts.

This chapter elaborates on the first phase of our approach, the semantic

representation (which was briefly introduced in Section 1.5.1). It details the

representation of texts and the process of automatically deriving the

representation, through a semantic extraction process where texts are analyzed at

lexical, syntactic, and semantic levels. We begin with a careful analysis of what it

means to quantify the semantic similarity between texts.

2.2. A Closer Look to Text-To-Text Semantic Similarity

This section presents several illustrative examples with respect to assessing

similarity between two texts. The ideas of computing semantic similarity that

emerge from these examples motivate the choices we have made to develop our

33

meaning representation which is to be used later when defining and computing

the sentence-level semantic similarity metrics.

In the simplest case, two input texts can be considered semantically

equivalent when there is an almost perfect overlap among the lexical tokens in the

two texts and the syntactic relations among these tokens are also similar. By

overlap we mean that the tokens are represented by their sense and not their

lexical form. In other words, we are comparing the canonical forms of the two texts,

where: a) all lexical terms are replaced with the identifier of the semantic sense to

which they belong (e.g., the ID number of a WordNet synset), and b) all syntactic

relations are converted into a agreed-upon format (e.g., use only active voice for

verb phrases). If the canonical forms are identical or equivalent, then we say that

the texts are also equivalent and therefore convey the same meaning. Such ideal

cases rarely occur in the real world.

The next level of complexity occurs when two sentences are almost identical

with the exception of a few concepts which are present in one text but not the

other. Depending on the semantic function of the extra concepts, they may have a

smaller or a greater significance on the overall meaning of the individual sentence

in which they occur and therefore on the similarity of the two sentences. For

example, consider the next group of sentences:

A. John ate an apple.

B. John ate a red apple.

C. John ate a green apple.

D. John bought an apple.

Sentence A and sentence B are almost identical except the extra attribute of

color (e.g., red) in sentence B. As red is just a modifier, the two sentences could be

34

considered fairly similar. The same holds for sentences A and C. However, we

cannot say the same thing about sentences B and C, since we know in this case

that the color of the apple is different. A similar line of reasoning can be applied

when comparing the two semantically different sentences A and D, in which the

predicate of the two is different.

Sometimes, sentences refer to the same concepts by using different words, i.e.,

synonyms, hyponyms, or anaphors. Automated methods assessing similarity of

texts should account for such cases. Suppose now that we want to compare

sentence A above with the following two sentences:

E. John consumed an apple.

F. John ate a fruit.

In sentence E, the verb ”to consume” is a synonym of the verb ”to eat”, while

sentence F contains the word ”fruit” which is a hypernym of the word ”apple”

(i.e., an apple is a fruit). Knowing about the semantic relation between two words

can help us to correctly find the relation of paraphrase between sentences A and E

and the relation of entailment from sentence A to sentence F. In a looser definition

of paraphrase in which, say, we are only interested to know that John ate some

type of fruit, then we can safely consider sentences E and F as being semantically

similar too.

Both examples above can be solved by considering the similarity of the few

mismatching words, given that everything else matches. Such cases can be

handled by using libraries that offer explicit semantic relations between words,

such as synonymy or hyponymy. To get word-based semantic similarity metrics,

we rely on two approaches. One is using the WordNet Similarity package

(Pedersen, Patwardhan, and Michelizzi 2004) which offers six measures of

35

similarity and three measures of relatedness, based on the lexical database

WordNet. The second approach is using Latent Semantic Analysis (LSA), a way of

representing the meaning of words with vectors, where the similarity between

two words can be computed as the normalized dot-product between their

corresponding vectors (Landauer et al. 2007).

Syntactic relations in a sentence are also important to assess its meaning as the

following example shows. Suppose we need to assess the semantic similarity of

the following pair of sentences:

A. Yahoo bought Overture.

B. Overture was bought by Yahoo.

This is a very simple example of paraphrase where the main difference is the

presence of active tense for the predicate in sentence A versus the passive tense in

sentence B. By looking at the dependency relations in the two sentences, we

notice that the logical subject, Yahoo, and the direct object, Overture, is the same

in both sentences, which suggests that the two sentences are in fact paraphrases.

Dependency relations can also tell us what words are important or not for a

sentence. For example, a word that describes an attribute of a noun, such as the

color of a fruit, is considered less important than other types of words, such as the

subject or the predicate of a sentence.

Another example where syntactic information can help is when one sentence

contains some extra information that can be ignored. Suppose we have the

following pair of sentences:

A. Tommy said that John proposed to Mary.

B. John proposed to Mary.

36

Sentence A contains some extra information when compared to sentence B:

”Tommy said that ...” Sometimes we are only interested in the real message

contained within the sentence, which is the fact that John proposed to Mary, and

we can ignore the rest. The syntactic information will tell us that there is an extra

phrase which complements the main phrase and can be ignored. This example

was inspired from the work of Qiu, Kan and Qua (2006) where a decision tree

classifier is trained to find what bits of extra information should be considered

significant or not, while checking for paraphrases.

The syntactic relations of words in a sentence can be represented either with

phrase-based syntactic trees or with dependency trees. Phase-based trees are

hierarchical, tree-like structures, where the leaf nodes represent words, in the

same order as they appear in the text, from left to right, while the intermediate

nodes represent parts-of-speech or larger phrases (e.g., noun phrases - NP, verb

phrases - VP, sentence - S). Figure 2.1 shows an example of a syntactic tree, based

on Penn Treebank annotation guidelines (Bies et al. 1995). Dependency trees are

hierarchical organizations of explicit syntactic dependency relations between two

words in a sentence. In a dependency tree, every word in the sentence is

represented by one node in the tree and modifies (or is modifier of) exactly one

word, its head, except the head word of the sentence, which does not have a head

and is the root node of the tree. Figure 2.2 depicts a dependency tree extracted

using Minipar (Lin 1993), a dependency parser. The nodes in the tree are labeled

with the lemma form of the initial words. The types of the dependency relations

between words are represented as labels on the edges of the tree. Note that there

is no straight and simple way to represent the initial sentence directly from the

dependency tree, as is the case with the phrase-based trees, where the sentence

could be reconstructed by reading the leaf nodes from left to right.

37

The decision had been within its legal rights.

DT NN VBD VBN IN PRP$ JJ NNS

NP NP

PP

VP

VP

S

Figure 2.1
Example of a Phrase-based Syntactic Tree

The decision had been within its legal rights.

legalitsthe

righthavedecision

be

amod
poss

det

prep-within
aux

nsubj

Figure 2.2
Example of a Dependency Tree

38

2.3. Semantic Interpretation versus Semantic Mapping

Much research has been conducted on quantifying and measuring text-to-text

semantic similarity. The ideal approach to handle this problem is a complete

semantic understanding of the input, which we call the semantic interpretation

approach. With current technological resources this approach is not yet practically

feasible. However, significant progress has been made with the development of

linguistic and semantic-based corpuses such as WordNet (Miller 1995), PropBank

(Palmer, Kingsbury, and Gildea 2005), and FrameNet (Ruppenhofer et al. 2005).

Because the ideal approach is not yet practically feasible, scientists have tried

going more towards a semantic mapping approach. The goal in semantic mapping is

to assess the meaning of one text relative to the known meaning of another. For

instance, in Intelligent Tutoring Systems finding the correctness of natural

language student input can be reduced to assessing the meaning with respect to

an ideal answer provided by an expert whose correctness is assumed. Instead of

truly understanding student input’s meaning, all we need to do is finding a good

mapping function through which we can accurately measure the semantic

similarity between the student input and the benchmark text, the exert answer in

this example. In order to facilitate the semantic mapping approach, the texts to be

assessed are converted in a meaning representation that retains the prominent

linguistic information of the original texts. These representations are then

compared using mathematical and algorithmic functions and similarity scores are

computed. This chapter describes mapping the source texts onto such

representations. We describe the representation in detail and show how to

automatically map texts onto it.

39

2.4. The Semantic Representation

In this section we detail the design of the meaning representation. There are two

requirements that we wish to fulfill through this representation. First, the

representation should be computer-friendly, well-structured, rigorous and

unambiguous, for an easy and straightforward automatic knowledge processing.

Second, the representation should be ergonomic and easy to read, understood

and analyzed by humans; because a representation that is easy to understand,

makes a good starting point to develop and debug new research ideas. Our

proposed representation is based on a class of knowledge representations, called

natural language based knowledge representations (NL-based KRs), which meet both

of the above requirements.

Given the input text T of relative short length (it can be a phrase, a sentence or

a paragraph) we first represent it as an ordered list of lexical tokens. A token can

be either a word or a punctuation mark and it is not unique (there can be more

than one token with same lexical form). We associate a representational element

to each token (tok) which is described in the following regular expression form:

SRtok = (Word, Lemma, POS, Specificity,WN-SENSE|LSA-Vector,

(< − : deptype : depmod > | < dephead : deptype : − >)+)

If the token corresponds to a punctuation mark, then only the first three items

are considered. Word and Lemma are identical in this case and are assigned a label

that indicates the corresponding punctuation mark (e.g., dot, comma, colon). The

POS is allocated the constant string value ”PUNC” which specifies that the

current token is associated to a punctuation mark in the input text, or ”PERIOD”,

which specifies the end of a sentence.

40

For tokens that correspond to actual words in the input text, the items of the

representation are described below:

• Word represents the raw, unmodified lexical form of the word. By storing it

this way we make sure nothing is lost from the initial input, which we can

easily reconstruct by concatenating all the Word elements of the list.

• Lemma is the lemma, or the root form, of the initial word, in lower case

letters. This property will allow us to group words that are similar in

meaning and differ only by their lexical derivations of the same root form

(e.g., pretty is the root form of prettily). Words that have same root form or

lemma are considered to be semantically close. Another option that we can

use instead of lemmas is the stemmed form of words. Stemming is a simple

process for reducing the morphologically derived words to their base

(root) form. The advantage for stemming is that it is easy to implement and

is fast. The disadvantages are that not all stems are dictionary words (i.e.,

the stem of prettily is prettili, based on Porter Stemmer’s rules (Porter

1997)), some words with same lemma have different stems (i.e., the stem

form of leaves is leav and not leaf), and some words that have the same stem

don’t always represent for the same concept (i.e., both words generic and

generate have the same stem, gener).

• POS is the part-Of-speech, or the syntactic role of the word (e.g., noun,

verb, adjective). This item is important when we want to study and

compare the syntactic functions of words. For example, determiners (e.g.,

a, an or the) are less important, and sometimes can even be ignored, when

determining the semantic similarities between two texts (e.g., ”I saw a boy

run.” vs. ”I saw the boy run.”).

41

• Specificity measures the specificity of a word. By definition, the specificity

of a word tells us how common the word is in general language use.

Earlier studies (Corley and Mihalcea 2005) suggest that using

specificity-based weighting for words can improve a system’s performance

on the task of paraphrase identification. If a word is very specific it is

deemed more important for the task of similarity assessment since its

usage will have a greater influence on the meaning and the topic of the

larger text in which it occurs.

• Next item represents the semantic meaning of a word. We adopt two

possible options to represent the meaning of a word. First one is the sense

of the word from Wordnet (Miller 1995), one of the most commonly used

and largest lexical databases for English. Second option is Latent Semantic

Analysis (LSA), a well-known technique for capturing the meaning of

words through vectorial representations. LSA (Landauer et al. 2007)

suggests that the meaning of a word is characterized by the company it

keeps. By company we understand the context in which the word is

commonly used. This context can be evaluated by analyzing word-to-word

co-occurrences in large collections of texts. The co-occurrences of a word

with other words are synthesized in its associated LSA vector. Since LSA

vectors are rather tricky to represent ”on paper”, we list only WordNet’s

sense numbers in all following examples of meaning representation. More

details about WordNet senses and LSA vectors will be presented in the

following subsections.

• Last item in our representation is a list of word-to-word syntactic

dependencies which are associated with the current word. The syntactic

42

information for an individual word in a sentence is extracted from a

dependency tree. Given a dependency tree, the list of dependencies can be

easily derived by traversing the tree. We characterize the dependency by

the type of the relation, the head, and the modifier. When the current word is

the head of a dependency, then we represent the dependency in our list as

< − : deptype : depmod >, where deptype is the type of the dependency and

depmod is the modifier in the dependency relation. In the other case, when

the current word is the modifier in the dependency, then we represent the

dependency as < dephead : deptype : − > where dephead is the head word in

the dependency. Notice that we use a dash line as a replacement for the

current word. We represent the dependencies in a way that allows for

easier comparisons between the dependencies sets of two words.

The role of this representation is to provide easy access to any type of

information that we may inquire. Our experiments have shown that choosing the

right type of information from this representation can significantly affect the

performance of the system, whether we want to include punctuation into the next

steps of the analysis, or we choose to ignore the case-sensitive aspect on the input

words.

Some of the items presented in the list above require more details, which are

further discussed in the next subsections.

2.4.1 Word Senses in WordNet

Most of words in English are polysemous; they have multiple meanings

depending of the context in which they are used. WordNet (Miller 1995) is

organized in synsets, which are sets of synonymous words referring to a common

semantic concept. The sense of a word is associated with exactly one synset.

43

Example of such synsets are (”reason, understanding, intellect”) defined in WordNet

as: the capacity for rational thought or inference or discrimination; or (”cause, reason,

grounds”) defined as: a justification for something existing or happening.

The WordNet database maintains definition entries on four part-of-speech

types that associate with content words only: nouns, verbs, adjectives and

adverbs. Some words can be used with more than one part of speech. Therefore

the senses of a word are also associated with a particular part of speech. The

senses are numbered within the definition of a word and the first sense is known

as the most used sense for the word and its part-of-speech. As an example, let’s

look at the word reason as is stored in WordNet 2.1. The word has two

part-of-speech types: a noun, which has 6 senses (1. ”rational motive”, 2. ”an

explanation”, 3. ”the capacity for rational thought”, 4. ”good sense and sound

judgment”, 5. ”a justification”, 6. ”a fact that logically justifies some premise”); and a

verb, which has 3 senses (1. ”to decide by reasoning”, 2. ”to present arguments”, 3. ”to

think logically”). If we want to use the word reason with the meaning for ”a

justification” then we refer to is as the fifth sense of the noun.

Knowing the sense of the words used in texts is a big advantage for any task

that requires a semantic understanding. However, finding the correct sense of a

word in a given context, e.g., a sentence, is a major challenge in NLP, known as

the problem of word sense disambiguation (Jurafsky and Martin 2002). The

difficulty of the problem arises from two reasons. First, detecting the correct sense

of a polysemous word requires deep knowledge of the language and the ability to

analyze the text that describes the context in which the word is used. Second, we

might encounter new words or new senses of already known words that are not

present in WordNet’s dictionary.

44

2.4.2 Using LSA to represent the meaning of words

LSA (Landauer et al. 2007) is a statistical technique for representing meaning of

words that relies on word co-occurrences to derive a vectorial representation for

each word. It is based on the principle that the meaning of a word is defined by

the company it keeps. Two words have related meaning if they co-occur in the

same contexts. The co-occurrence information is derived from large collections of

text documents. The mathematical details of the process for constructing the LSA

vectors of words are presented below.

In a first step, a term-by-document matrix X is created in which element (i, j)

contains a binary value, 1 if term i occurs in document j and 0 otherwise. We can

also use weighted values, which should reflect the importance of the terms for the

document where they appear. For example, we can use the frequency of how

many times term i appears in document j. The importance of a term can be

determined either locally, based on its appearance in the current document, or

globally, based on its usage in general. Normally, we would associate two weights

to the elements of the matrix X , a local weight and a global weight. The most

commonly used local-global weighting scheme in this case is a global entropy

with a local log-type frequency (more details about these weights are given in

Sections 3.4 and 4.8.1). After the term-by-document matrix is created, a

mathematical procedure, called Singular Value Decomposition (SVD), is applied

resulting in three new matrices: T and D, which are orthonormal, and S, which is

a diagonal matrix, such that X = TSDt. The dimensionality of these matrices is

then reduced by retaining k rows and columns corresponding to the highest k

values in S. A new matrix X ′ = T ′X ′D′t can now be computed that is an

approximation of the original term-by-document matrix X in a reduced space of

k dimensions. Usually, k takes values between 300 and 500. Every word in the

45

initial collection of documents is characterized by a row (or vector) in the reduced

matrix X’. These vectors supposedly characterize the words using so-called latent

concepts, one for each of the k dimensions of the reduced space.

The main advantage is that by replacing the WordNet sense of a word with its

corresponding LSA vector the hard task of word sense disambiguation is avoided

since the meaning of a word is already captured in the LSA vector. Furthermore,

in this representation we could capture meanings of words in particular domains,

e.g., conceptual physics domain, by simply creating an LSA space based on a

collection of texts from that domain. A domain specific LSA space can be created

automatically (helping scalability) as opposed to a WordNet-like solution of word

sense inventory creation which is mostly manual.

The disadvantage of using LSA is that in an LSA space there is only one LSA

vector for a word. Therefore, words that are used with multiple senses in the

collection of documents from which the LSA space is being built will have the

meaning of all their senses assimilated and mixed in the final LSA vector. This is

one unfavorable aspect of the LSA on which most researchers are willing to

compromise due to the simplicity of the process of LSA information extraction.

2.4.3 Syntactic Dependency Trees versus Phrase-based Trees

There are two most common ways in which syntactic information can be

encoded, either through dependency trees or through phrase-based trees. An

important question that we need to answer is why we chose dependency

relations instead of phrase-based structures to represent the syntactic

information. Besides being a matter of preference, dependency relations can

handle free word order languages, such as Hungarian, Portuguese or Russian

(Covington 1990). Phrase based trees are heavily dependable on the order of the

46

words in a sentence, and therefore cannot handle free word order languages too

well (Covington 1990). By choosing dependency relations we insure the

applicability of our method to these languages as well. Another reason for

choosing dependencies is that they generalize better the syntactic formations and

is easier to compare them between texts.

2.5. Extracting the Semantic Representation

This section will detail the steps to convert the input raw texts into the data

representation described in the previous section.

2.5.1 Preprocessing: Lexical Analysis

An important step when working with raw input text in any NLP related task is

the preprocessing phase. By preprocessing we understand a set of simple

operations that are already proven to be efficient, fast and with high accuracy on

the output. A major part in preprocessing a raw input text relates to lexical

analysis, which is the lowest and easiest level to analyze a natural language text.

The first step in lexical analysis of the input text is tokenization. Tokenization

is the process to obtain the ordered set of lexical tokens that make the text. These

lexical tokens can be words, punctuation marks, symbols or other meaningful

structures. In general tokenization is a simple process and it can be done easily by

most of the NLP libraries available on the internet. Some of the basic operations

include separating the punctuation from the words (e.g., adding a space between

the comma or period signs and their previous words) or separating some complex

words in individual tokens (e.g., separating ”don’t” to ”do n’t” which means a

negation of the word ”to do”). Although a simple process, tokenization is a very

important process in NLP related tasks and should not always be taken for

47

granted, especially when working with texts from other languages, such as Thai

or Chinese. As Webster and Kit (1992) were saying ”it is an obvious truth,

however, that without these basic units clearly segregated, it is impossible to

carry out any analysis or generation”.

Besides building the list of lexical tokens, the other role of tokenization is to

divide the input text into sentences. Tokens that are labeled as a period marks,

divide the output list into sentences. This process is also known as the task of

sentence detection. We previously noted that the types of any non-word tokens,

are stored in the POS field of our data structure.

After obtaining the list of lexical tokens, next steps are POS tagging and

Lemmatization. POS tagging is the process of labeling each lexical token with a

syntactic type. Lemmatization is the process for extracting lemmas from words.

The order on which one of these two processes is done first depends on the

methods that are being used. Sometimes a Lemmatizer requires knowing the POS

of a word, and sometimes it does not. State of the art lemmatizers and POS

taggers are available and their performance is significantly high. For example, on

French language, their performance has been reported as up to 97.68%, for POS

tagging, and up to 98.36%, for lemmatization (Seddah et al. 2010).

2.5.2 Extracting word-based semantic information

The next phase in building our semantic representation is to represent individual

words based on their semantic meaning in the context of the text. We have

mentioned before that there are two ways to represent the meanings of words.

One is by using the sense of the word as is stored in a lexical database or

dictionary such as WordNet. To find the sense of the word in a specified context is

a very hard task if close to perfect accuracy is needed. However, because almost

48

all words have one sense in which they are used most of the time, a simple

baseline method of always choosing the most common sense of a word usually

gives very high accuracy scores, and this will suffice on most NLP related tasks.

Since in the current work, the interest is not to solve the word sense

disambiguation problem, we chose to simply associate words with their most

used semantic sense.

The second way to represent the meaning of a word is by its associated LSA

vector. LSA vectors are included in an LSA space which is previously computed

from large collections of documents. Depending on the particularities of the input

texts that are given for the task of measuring semantic similarity, we should make

sure that the LSA space which we use conforms to these particularities. That is,

the meaning of words being used in the input texts needs to be the same with the

meaning of these words in the document collection from which the LSA space

was built. One straightforward way to make sure that this condition is satisfied, is

to build the LSA from a collection of documents that appertains to the same topic

as the input instances.

2.5.3 Extracting Dependency Relations

The final step in building our data representation is to retrieve all syntactic

dependencies from the input texts and build the list of associated dependencies

for every word. We are going to experiment with two dependency parsers:

Minipar (Lin 1993) and the Stanford parser (de Marneffe, MacCartney, and

Manning 1993). The parsers take as input a tokenized sentence and return as

output a dependency tree from which the list of dependencies can be easily

extracted. By traversing this tree, for each internal node, which we know is head

of at least one dependency, we retrieve triplets of the form rel(head, modifier) where

49

rel represents the type of dependency that links the node, i.e., the head, to one of

its children, the modifier. Although our representation stores only the list of

dependencies, it will also be useful to know the position of these dependencies in

the tree. As the work of Wan et al. (Wan et al. 2006) suggests, dependencies

should also be accounted for their importance in the sentence, just like words. For

example a dependency between the main verb and the subject of a sentence ought

to be more important than a dependency between a noun and its determiner.

Therefore, besides the type of the dependency, we argue that dependencies which

are closer to the root in the dependency tree are more important than the others,

when measuring for the semantic similarity.

Because in general, dependency parsers cannot produce perfect output,

methods that use this syntactic information to measure semantic similarity will

have their performance affected by the performance of the parsers. However,

since dependency parsers are consistent in their mistakes, these mistakes should

be similarly propagated to both texts that are to be compared. In such cases, one

would hope that the semantic similarity measures will not be affected too much

because the result for comparing two similarly incorrect syntactic constructions

will be the same as when comparing two similarly correct syntactic constructions.

In Chapter 5 we describe methods that will use these dependency relations to

help in measuring the semantic similarity between texts, particularly on the task

of paraphrase identification.

2.6. Experimental Setup on Extracting the Semantic Representation

The main topic of this work is to research models, methods and metrics to

quantify the notion of semantic similarity between texts. So far, in this second

chapter, we have presented a model of how to process and represent the input

50

texts in a task of measuring the semantic similarity. We also described how to

automatically derive these representations using various NLP techniques such as

tokenization, lemmatization, POS tagging and extraction of syntactic

dependencies. The following chapters will present various approaches to use

these representations in solving two particular tasks, paraphrase identification

and entailment recognition. For these tasks we will experiment with three

representative datasets, which were previously introduced in the introductory

chapter. For the remainder of this chapter we will describe our own

implementation for preprocessing these datasets and extracting the semantic

representations. We also report for each dataset time-related performance scores

of the preprocessing phase. In particular, we note that the parsing of texts and the

extraction of the dependency trees are the most time consuming steps in this

preprocessing phase.

To preprocess the datasets we use two common NLP libraries: the OpenNLP

JAVA library 1, which offers standard NLP functions for text processing, including

POS tagging and syntactic phrase-based parsing but not dependency-based

parsing; and Stanford CoreNLP (StanfordNLP), a similar integrated suite of NLP

tools for English in Java, which offers additional support for dependency based

parsing, named entity recognition and coreference resolution. Since OpenNLP

does not have functionality for dependency-based parsing, we will use the

Minipar dependency parser to run some of our dependency-based experiments.

Except for the Minipar parser, which was implemented in C++, all our

1 OpenNLP is currently offered as a free java-based library by the Apache
Software Foundation at http://incubator.apache.org/opennlp/index.html

51

experiments are implemented in Java and are run on a Windows-7, 64k-bit

machine, with an Intel i7 CPU @2.67GHz and 9GB of DDR3 memory @1333MHz.

The Microsoft Research Paraphrase Corpus (MSR). To lexically preprocess

this corpus (tokenize, sentence detection, lemmatize and POS tagging) using

OpenNLP (no dependency parsing), it takes about 29 seconds; using the Stanford

Parser (excluding dependencies) it takes 18 seconds. For dependency parsing,

with Minipar it takes 69 seconds to parse the whole corpus, while with the

Stanford parser it takes 35 minutes and 43 seconds to parse and extract the

dependencies. We see that there is a huge gap in time performance between the

Minipar and the Stanford Parser and we should explain that difference next. To

build the dependency tree, the Stanford parser first needs to construct the

phrase-based syntactic tree and then, from this tree it will extract the syntactic

dependencies. In opposition, Minipar does not need to use phrase-based parsing

for its dependencies. Minipar was developed in C++ which results in execution

code that is much faster than Java based programs, and aims precisely at

extracting the dependency relations and nothing else. Since most of our work was

done in Java, we used Minipar to experiment only with the MSR corpus, and

therefore we do not report performance scores using Minipar on the other two

corpora.

The User Language Paraphrase Corpus (ULPC). To lexically preprocess the

ULPC corpus, with OpenNLP (no dependencies) it takes 9 seconds, while with

StanfordNLP (no dependencies) it takes 8 seconds. For parsing dependencies

with the Stanford parser, it takes a total of 7 minutes and 23 seconds.

The Recognizing Textual Entailment Corpus (RTE). To lexically preprocess

our RTE combined corpus, with OpenNLP (no dependencies) it takes 23 seconds,

while with StanfordNLP (no dependencies) it takes 17 seconds. For parsing

52

dependencies with the Stanford parser, it takes a total of 33 minutes and 47

seconds.

53

CHAPTER 3

LEXICAL-BASED SIMILARITY METHODS

3.1. Introduction

Previous chapters of this dissertation have introduced the reader to the task of

measuring text-to-text semantic similarity and how to preprocess and convert the

initial input texts into some well defined semantic representations that will help

subsequent steps of the measurement process. We refer to these steps as methods

or metrics for measuring text-to-text semantic similarity. In this chapter we begin

to look at some basic, simple and intuitive methods that use the semantic

representation defined in previous chapters. The methods presented in this

chapter primarily rely on finding matches between individual words or tokens

contained in the texts and using the matched pairs to analyze the input instances

at surface string (i.e., lexical) levels only. Some of these methods are simple

enough that they can be used as baselines for the evaluation of other, more

complex approaches, which we will present in the following chapters.

We further augment the presented token-based matching methods with

weighting schemes as follows. For every token in the input texts we associate a

weighting value that is statistically computed based on the token’s local and

global use, in the current texts and in language in general. Local weighting is

computed based on token’s frequency in the current text, while global weighting

reflects the global specificity of the token. The term specificity was briefly

mentioned in previous section 2.4. We will look at two particular examples of

specificity measures which are valid only for words (i.e., punctuation is excluded):

the entropy of usage and the inverse-document-frequency (IDF) of the word.

54

More details about these measures are given in the corresponding sections of this

chapter. In particular we will describe our own implementation for building the

IDF index of words from the Wikipedia online collection of documents.

3.2. Study Case: A Simple Way of Computing Semantic Similarity

Texts are composed of lexical tokens, from which words are most important. They

are considered the basic structural subunits for texts. To compare two texts one

must first take a look at the words that comprise them. Words can be compared

based on their lexical and morphological form, or based on their semantic

meaning. Comparing words by their semantic meaning will be discussed in

Chapter 4. Then at the next level, one should look at the relations that connect

these words in order to properly define the whole meaning of a sentence. The

most useful relations between words in a text are the syntactic dependency

relations. Comparing these syntactic relations between texts will be discussed in

the Chapter 5. For this chapter we limit our discussion to comparing words as

single, independent units that form a text, and we only look at their lexical,

morphological and part-of-speech forms.

Before working on a research problem it is often recommended for researchers

to start with some basic simple solutions and test how well they behave on some

evaluation dataset, which is relevant to the research task. This gives the

researcher a sense of how difficult or easy a task might be for a given dataset. In

our case, a simple approach to calculate the semantic similarity is to assume

lexical similarity entails semantic similarity. Of course this is not always the case,

but in general and also intuitively, when two texts share most of their lexical

tokens, the probability of them being semantically similar is significantly higher.

So, in the most simple and naive way of thinking, we regard a text as the

55

unordered set of all the words or lexical tokens that are contained in this text. The

problem of comparing two texts is then reduced to comparing the two sets of

words or lexical tokens that represent them. A significant part of this chapter will

deal with this type of lexical comparing approach. We will present experimental

setups and performance results on lexical token overlap methods, enhanced with

local and global weighting schemes.

In general, when comparing two sets of elements, there is a similarity metric

defined between the elements. The similarity metric can be a very simple one

(e.g., a binary defined metric of equivalence, where two elements can be either

equivalent or not) or more complex (e.g., based on distance measures, like the edit

distance, the linear or the Manhattan distance). A decent baseline for measuring

semantic similarity is to choose lexical equivalence as the similarity measure

between words. Two words are lexically equivalent if their lexical form is

identical; in other words, if they contain the same sets of letters, arranged in the

same order.

Given two texts, A and B to compare, a word in A is called a common word, if

it has an equivalent word in B, and vice-versa. Since the relation of equivalence is

symmetrical, it is easy to deduce that the number of common words in A is equal

to the number of common words in B. One way to compare two texts, which we

represent as unordered sets of words, is to count the number of common words

and divide this count by the average number of words from the two sentences, in

order to normalize it. We describe this method on the following example:

A. Mary saw Jimmy leaving the house.

B. Mary told Jimmy to go back in the house.

56

Based on the representation of meaning we defined in Chapter 2, we represent

the two texts as follows1:

A. [

(Word=Mary, lemma=mary, POS=NNP, WNSENSE=1,Deps=(saw:nsubj:-)),

(saw, see, VBD, 1, (-:nsubj:mary; -:dobj:jimmy; -:obj2:leaving)),

(Jimmy, jimmy, NNP, 1, (saw:dobj:-; leaving:subj:-)),

(leaving, leave, VBG, 1, (-:subj:Jimmy; saw:obj2:-)),

(the, the, DT, 1, (house:det:-)),

(house, house, NN, 1, (leaving:obj:-; -:det:the)),

(., ., PERIOD, 1, ())]]

B. [

(Mary, mary, NNP, 1, (told:nsubj:-)),

(told, tell, VBD, 4, (-:nsubj:Mary; -:dobj:Jimmy); -:obj2:go),

(Jimmy, jimmy, NNP, 1, (told:dobj:-; go:subj:-)),

(to, to, TO, 1, (go:aux:-)),

(go, go, VB, 1, (-:aux:to; told:obj2:-; -:advmod:back; -:prep in:house)),

(back, back, RB, 1, (go:advmod:-)),

(in, in, IN, 1, ()),

(the, the, DT, 1, (house:det:-)),

(house, house, NN, 1, (-:det:the; go:prep in:-)),

(., ., PERIOD, 1, ())]]

For the moment, we choose to not go into the details of how the dependencies

are represented above and what do they mean. However, we will make a few

1 Similarly to the previous example described in Chapter 1, and for esthetic
reasons, we chose to omit showing the weighted specificity of the words

57

comments about this example of a representation. First, note that the lemmas are

always in lower case. For words where the notion of a lemma is not applicable

(e.g., personal nouns or prepositions) the lemmas are equal to the original words

in lower case letters. Second, observe that for the WordNet sense, the only word

which has a sense different than 1 is the verb ”to tell”. As defined in WordNet the

fist sense of this verb would be: ”to say something or to express in words”. But in our

case the meaning is more like a command or an order, which is similarly

expressed in at the 4th WordNet defined sense: ”to give instructions to or direct

somebody to do something with authority”.

We now continue our discussions of how to apply a simple semantic

similarity metric to these texts2. Text A has 6 words, out of which 4 are common

words that are also contained in Text B. Text B has 9 words, out of which the same

number of 4 words are considered common. To calculate the similarity score we

divide the number of common words found in both sentences, 4, by the average

number of words per sentence, (6 + 9)/2 = 7.5, and we get a final similarity score

of 0.533. The score is normalized between 0 and 1, where 0 simply means that

there are no common words between the two input texts, and 1 means that the

two texts contain the exact same sets of words. Notice that this simple metric does

not capture the order of the words in the text. So for example, on the following

two sentences, this metric will compute a maximum similarity score of 1, even

though their semantic meaning is clearly different.

A. John shot the sheriff.

B. The sheriff shot John.

2 For this example we shall ignore the punctuation marks, as opposed to the short
example that was previously given in Section 1.5.2

58

This is one of many cases where the order of words in a sentence and the

syntactic relations between them is very important. A simple metric, which

ignores these important aspects of a text, will not be able to handle those

particular cases. However on the datasets that we experimented on, we noticed

that this simple metric, which we have just described, performs fairly good, when

compared to other more complex methods that also account for word order and

syntax. This suggests that such cases, where syntax and the order of words are

critical for measuring semantic similarity, are not that many.

3.3. Similarity Methods based on Lexical Token Overlap

In this section we present various options to expand the simple metric presented

in previous section, and acquaint the reader to a range of possible ways to explore

the dimensionalities of the input, but only at the lexical level. We shall use only

the basic features that are present in our semantic representation, features such as:

the original lexical form, the base form (either the lemma or the stem) and the

part-of-speech of all words that are in the input texts. When comparing two lists

of lexical items, which conform to our representation described in Section 2.4,

there are several decisions to make, some of them concern filtering out irrelevant

items, while other refer to what information will be used to compare the tokens.

The experiments show that, for some decisions, there is no clear winner on what

option is best to make. As we will see, every option has advantages and

drawbacks. Making the correct choices depends pretty much on the type of task

we need to solve and the datasets what we will be working with. In the following

paragraphs we try to make a complete list of all these possible choices.

Ignore Punctuation. A very important decision that we need to make when

comparing two texts on the lexical level, is what lexical elements that are

59

contained in the text we include in our comparison. For example, do we look at

punctuation or do we ignore it? Both choices have advantages and disadvantages.

On one hand, one might say punctuation is much less important than words and

it can be viewed as noise in the text which can be safely discarded. A punctuation

mark does not express any meaning other than marking the changes in tone and

intonation that are used in the spoken language. But if we ignore punctuation

then we might lose some important changes in the meaning of the sentence. Take

for example the following pair of sentences: I am a business man. versus I am a

business, man. We can see that, in this case, the comma makes all the difference

between the two sentences who are in fact expressing different facts.

Content Words Only. Another filtering decision which follows the same

reasoning as for the punctuation marks is: do we compare content words only?

After all, they are the most representative lexical elements for the meaning of

texts. Content words are words whose part of speech is either a noun, verb,

adjective or adverb. A counter example against using only these types of words

for comparation would be the following two sentences which obviously express

different meanings: John is flying to Seattle versus John is flying from Seattle.. For this

example the content words are: John, flying and Seattle.

Remove Stop Words. This is a common technique that is used in many

Information Retrieval (IR) tasks, when searching for relevant documents to a list

of given key words (also called search words). Stop words are highly frequent words

that occur in most of the documents/instances in a collection (i.e., words such as

the or in). In a task of information retrieval, these words are not important and

therefore dropped. Our experiments show that, for the problem of semantic

similarity assessment, removing the stop words consistently leads to worse

results. This suggest that the stop words are actually important for our task and

60

should not be removed during the comparing process. For our experiments we

used a list of 423 unique stop words from the Onix Text Retrieval Toolkit3 (some

of the words in the original list were repeated).

Compare base form of words. The next sets of decisions refer to what part of

the lexical token do we use to compare to another token. There are two most

feasible choices here. We can use either the original, unchanged lexical form of the

token, or we can use the base form of words, in which all morphological

appendages are stripped from the original lexical form of the word (e.g., a lemma

or stem form). Similar to stop words, truncating words to their base form is a

common technique used in IR, in order to reduce the vocabulary and thus the

dimensionality of the search space. In our case, we have yet to prove if this is

beneficial or not for the performance of our text-to-text similarity assessment

metrics. An example that would discourage using only the base form of words is

the following: The children are playing in the courtyard. versus The child was playing

in the courtyard. Both of these sentences will have the same form after lemmatizing

all enclosed words (i.e., The child be play in the courtyard.).

Ignore Case. Comparing two lexical tokens can be done either case

insensitive, in which we ignore the case of the letters of the tokens, or case

sensitive, in which we do not ignore the case of the letters. In general, it is better

to ignore the case when comparing lexical tokens. In this way, capitalized

common words that are at the start of a sentence, will be matched with their

correspondents from the other sentence, which might not be at the start of the

sentence, like the word people in the following example: People were having a good

time. versus Most people were having a good time. In contrast, ignoring the case of

3 Retrieved from: http://www.lextek.com/manuals/onix/stopwords1.html

61

letters can allow for some erroneous matches to occur, as in the case of the words

us (meaning we) and US (meaning United States) in the following sentences: They

made US prous. vs. They made us proud.

Compare with Part-of-Speech. In English there are many words, or lexical

items, that have multiple part-of-speech in which they can be used (e.g., walk can

be used either as a noun or as a verb, while cold can be used as a noun or an

adjective). To increase our confidence of matching the right words with the same

part-of-speech, we can add the following extra condition to the matching process:

matched words need to have the same part-of-speech. This will help us spot

much faster the difference in meaning between the next two sentences: Trees line

the riverbank versus The riverbank ends the line of trees. In this example the lexical

token line is used both as a verb (in the first sentence) and as a noun (in the

second sentence). In the first sentence, it is suggested that the line of trees follows

the riverbank, or is parallel to the river, while in the second sentence this line is

most probably perpendicular or diagonal to the riverbank. The disadvantage for

including the part-of-speech in the comparison is that we may miss lexical tokens

that convey the same meaning in the two sentences but have different

parts-of-speech, due to the difference in sentences’ syntax structure. The

following example illustrates this particular case: They had a pleasant walk in the

park versus They pleasantly walked in the park. Note that, for this example, we will

need to match the base form of the lexical tokens and ignore the parts-of-speech,

in order to get the correct matching.

Unigram versus Bigram overlap. After completing all the filtering steps and

deciding on which lexical components of a token to use for the comparison, the

next decision to be made concerns the way to compare the lexical tokens, that is,

using one single token at a time (unigrams) or using two consecutive tokens

62

(bigrams). Bigrams can sometimes prove very useful to look at because they

account for part of the syntactic information in a sentence. As Collins (Collins

1996) noted, 70% of the dependencies in English are between adjacent words,

meaning that bigrams of consecutive words are able to capture most of the

syntactic dependencies in a sentence. One could go even further and look at the

number of common tri-grams or quad-grams of lexical tokens, but in this case the

space of possible structures to compare becomes too sparse, increasing the risk of

not finding any common lexical structures between the input texts.

Measuring the overlap of lexical n-grams to determine the semantic

equivalence between texts has been regularly used on problems of automatic

machine translation (MT) evaluation. Standard MT evaluation metrics have been

proposed to determine the performance of MT systems. Using these metrics, the

output of the systems is automatically compared against some ideal translations

of the input, created by human expert translators. Some of these metrics suggest

interesting ways to combine multiple types of n-gram overlap into one measure.

For example the BLEU score (Papineni et al. 2001) is a well known MT evaluation

metric that is based on computing the geometric mean of n-gram precision. The

n-gram precision is calculated as the rapport between the common n-grams

found between the MT system’s output and the ideal translation, and the number

of n-grams present in the system’s output. Similarly, the NIST score (Doddington

2002) also uses n-gram precision, but this time, to compute an arithmetic mean,

and weights are used to emphasize informative word sequences. Using MT

evaluation metrics to determine the semantic similarity at sentence-level has

already been proposed by Finch, Hwang, and Sumita (2005) where they

investigated various MT evaluation measures, such as BLEU, NIST, WER and

63

PER. Others researchers got inspired by this work and further expanded the

initial approach (Wan et al. 2006; Das and Smith 2009).

3.4. Weighting Schemas for Lexical Token Overlap Methods

So far we discussed about what kind of tokens from the input texts do we choose

to compare and what are some methods to compare them. As was suggested in

section 3.2, a simple way to compute the similarity score from comparing the

lexical tokens is to count how many common tokens exist between the two input

texts and then normalize this count by the average number of tokens that exist in

both texts. In this section we expand this simple way of computing the scores, by

introducing local and global weights, characterizing each of the tokens from the

input texts. We compute the weighted overlap score WSim from the list C of

common tokens found between two input texts, A and B as shown in Equation

3.1, where A ⊎B means we first consider all the elements in A and then all the

elements in B. Notice that in the simple case, when word weighting is not used

(either local or global weight), then the corresponding values for these weights

are equal to 1. Also, when we compare bigrams, the global weight is computed as

the maximum global weight out of the terms that compose the bigram. We also

tried to define this as the average global weight between the terms, but found that

the performance in this case slightly decreases.

WSim(A,B) =
2 ∗∑w∈C [weightglobal(w) ∗ weightlocal(w)]∑

w∈A⊎B [weightglobal(w) ∗ weightlocal(w)]
(3.1)

A local weight contains information about the frequency of a lexical token in a

text. In our representation, every appearance of a lexical token in the text is

accounted for, since we keep an ordered list of all tokens in the text. When we

64

simply count the common lexical tokens found in this list, we are actually using a

token frequency-based local weighting scheme. Another possibility here, would be

to use a binary-based local weighting scheme, meaning that we count only once the

lexical tokens found in the input texts. For example, on the following pair of

sentences: ”To be, or not to be.” versus ”To be alive, or not to be alive.” a

frequency-based local weighting scheme will count 6 common tokens

(punctuation excluded), while a binary-based local weighting scheme will count

only 4 common tokens. The normalization of these counts will also follow the

same type of local weighting, resulting a score of 0.86 for the first case, and 0.57

for the second case. Another type of local weighting, which is commonly used

when creating LSA spaces (Martin and Berry 2007) is the logarithm of the

frequency: log(frequency + 1). The role of this weighting scheme is to decrease

the effect of large differences in frequencies, for tokens used in large blocks of

texts. For smaller texts however (e.g., sentences), it is much less probable to

encounter such tokens with a high local frequency usage. We will use this type of

local weighting in the next chapter, when we talk about using LSA vectors to

measure the semantic similarity between texts.

Global weighting schemas tell something about how important a word is,

when used in a particular sentence, paragraph or document. To measure this

factor of importance for words, we use the so-called specificity of words.

Weighting words based on their specificity has proven to be very useful for

Information Retrieval tasks, where the common way to describe this specificity is

through the Inverted Document Frequency (IDF) value. Another way to define

the specificity of a word is by computing the so-called entropy value of the word

(more details about these two values will follow). As previously mentioned in

Section 2.4, the theoretical assumption in using the specificity of a word for

65

semantic similarity assessment, is that, if a word is considered highly specific

(e.g., a less common proper name - Cleveland, a rather uncommon noun -

rebarbative, or a noun that is very specific to a particular topic - eukaryote, for the

topic of biology), then this word should play an important role when considering

for semantic similarity between two texts.

In Information Retrieval related tasks, the IDF is used in combination with the

term frequency (TF) value of the lexical terms in a document, in order to represent

that document as vector in a space, whose dimensions are defined by the

vocabulary of terms. The IDF is defined as the logarithm of the normalized

inverse of the document frequency: idf = log(D/df), where D is the total number

of documents in the collection, and df is the total number of documents where the

current term appears. If the term appears in very few documents, it means the

term is very specific for those documents and therefore important. In a previous

work, Corley and Mihalcea (Corley and Mihalcea 2005) have tried using an IDF

index built from the British National Corpus, to solve the problems of entailment

and paraphrase identification on the RTE and MSR corpora consequently. For our

evaluation, we extracted an index of IDF values from Wikipedia, a very large

collection of online documents. We shall describe the process for extracting these

values in Section 3.9 at the end of this chapter, along with some relevant statistical

data, about the online collection.

The entropy of a word is defined as 1 +
∑

j
pij log2(pij)

log2(n)
, where pij =

tfij
gfi

, tfij =

type frequency of type i in document j, and gfi = the total number of times that

type i appears in the entire collection of n documents (Martin and Berry 2007).

This value gives less weight to types that are frequently occurring in the

collection of documents, while also taking into account the distribution of the

other types over documents (Dumais 1991). In our experiments, we will use the

66

entropy weights calculated from the TASA4 corpus, same corpus used to derive

the LSA space, which we will use in Chapter 4 (where we talk about semantic

similarities between words).

3.5. Symmetric versus Asymmetric Semantic Similarity

So far in this chapter, we have discussed simple ways to measure semantic

similarity, as a symmetric relation between two texts. Semantic similarity can also

be calculated as an asymmetric relation between two texts. Textual paraphrasing is

an example of symmetric semantic similarity relation, while textual entailment is

an example of asymmetric semantic similarity relation. By default, when we look

at asymmetric relations between two texts, A and B (where A is the first text and

B is the second one), we consider only when the asymmetric relations goes from

the first text, A, to the second text, B. In case of entailment, we call A - the Text and

B - the Hypothesis.

To measure the asymmetric semantic similarity between texts A and B, we

must evaluate if text B is semantically similar to text A (or, for entailment, if text B

is entailed from text A). If we choose to do this only through methods of simple

lexical overlap, then we must look at the percentage of lexical tokens in B which

are also found in A. Therefore, the only difference between computing a

symmetric similarity score and an asymmetric similarity score is the way we

normalize the count of common tokens found. For a symmetric relation we have

already suggested a normalization method, by dividing the count to the average

number of total tokens from both input texts. For an asymmetric relation, from

4 The company that built this corpus was called Touchstone Applied Science
Associates

67

text A to text B, the normalization should be made by dividing the count of

common tokens to the number of total tokens that are in text B. This way of

measuring the asymmetric similarity is also referred to as computing the n-gram

precision overlap of lexical tokens (Finch, Hwang, and Sumita 2005). To formally

extend this measure to include the weighting schemas, previously described in

Section 3.4, we say we compute the weighted asymmetric similarity score WASim

from the list C of common tokens found between two texts, A and B as follows:

WSim(A,B) =

∑
w∈C [weightglobal(w) ∗ weightlocal(w)]∑
w∈B [weightglobal(w) ∗ weightlocal(w)]

(3.2)

3.6. More Options on Lexical Overlap Normalization

Previous sections suggested that, depending on the type of the semantic

similarity relations, which is needed for a particular task, different ways of

normalization can be applied to the computed weighted lexical overlap score. For

example, an asymmetric relation of textual entailment from text A to text B can be

assumed by normalizing the weighted overlap score to the weighted lexical score

of sentence B. Regarding symmetric similarity relations, we assume in this

chapter a normalization by the average weighted score of the two input texts. But

there are other ways to normalize the overlap score, in order to obtain measures

for symmetric similarity relations. For example, one could normalize on the

minimum between the weighted lexical scores of the two inputs, or the maximum

(as is shown in Equation 3.3. To make an easier reference of these normalization

options in our experiments, we note with Average-Norm the normalization on the

average length of the input texts, and Max-Norm the normalization on the

maximum length of the inputs. We will only use these two types of

68

normalization, as we found out that they are consistently more efficient on the

task of paraphrase identification.

WSim(T1, T2) =

∑
w∈C [weightglobal(w) ∗ weightlocal(w)]

Max(
∑

w∈A|w∈B [weightglobal(w) ∗ weightlocal(w)])
(3.3)

3.7. From Quantitative to Qualitative Assessment

We evaluate these simple similarity metrics based on lexical token overlap on the

three datasets which were previously introduced in Chapter 1 (the MSR, ULPC

and RTE corpora). Since all these datasets assess the semantic similarity using

only binary qualitative values (i.e., is semantically similar or not) we need to

convert the similarity scores that our metrics generate, into binary qualitative

values of the semantic similarity relation that is evaluated by the dataset

(paraphrase for MSR and ULPC; entailment for RTE). This can be done easily by

deciding on a threshold value that will split the evaluated dataset in two groups:

instances that have the calculated similarity score below the threshold value will

be considered negative instances, meaning they do NOT have the semantic

similarity relation defined by the dataset, while instances with similarity values

above or equal to the threshold will be considered positive instances.

3.7.1 Calculating Similarity Thresholds for Qualitative Assessment

The next question is how to calculate the threshold value. There are a few possible

solutions to compute it, by looking at the specifics of the dataset. Some are simple

and require minimal information about the dataset, such as the ratio distribution

of positive instances, while some are more complex and require a complete

supervised learning from a training dataset.

69

Compute optimum threshold when only data distribution is known. In the

simplest case, with a minimum amount of available information about the data,

we can compute the threshold by looking only at the distribution of the data

(what percentage of instances in the training set are positive). Based on this

information, we search for a threshold value that will split the training data in

two groups, with a similar distribution of the classified output values (positive vs.

negative). The assumption here is that the distribution of instances in the testing

dataset is similar enough with the one in the training dataset, since the two sets

are initially generated from the same pool of samples.

The procedure for looking up the threshold in the training dataset is as

follows. Calculate semantic similarity values for all the training instances. Sort the

instances in ascending order, based on the computed values. Then, search for the

one instance in this ordered list that splits the list into a distribution equal to the

one which characterizes the training data. The computed similarity value of this

instance is the threshold we want.

Compute optimum thresholds using supervised learning methods. A more

complex method to compute the threshold is through supervised learning. The

input is an instance with a single continuous attribute, the similarity value and the

output is a binary value. Whether we use perceptrons, threshold classifiers, SVM

classifiers or even decision trees, all these methods share one goal in common, to

maximize accuracy on the training data. Therefore the output of these classifiers

is a threshold value that will give optimum accuracy on the training data.

A simple and straightforward way to calculate this optimum threshold,

without using some more complicated learning algorithms is as follows. Similarly

to the previous method, first sort the instances in ascending order, based on the

similarity metric values. Then gradually select all similarity values from the list,

70

in order, and calculate the accuracy of a system that will use them as thresholds

on the training data. Because these values are calculated in ascending order, and

because of the nature of the threshold classifier, computing accuracy for all these

values can be done on O(n), where n is the size of the training dataset (i.e., the

number of training instances). Finally, select the threshold that gives best

calculated accuracy on the training dataset.

For our experiments, since we already know much more about the datasets

than a simple distribution of the data, we will use the latter type of optimum,

threshold-based classification for all the metrics that are being defined in this

chapter and the chapters that will follow. We will call this, the threshold-based

classifier. We will also experiment with another well known classifier, a Support

Vector Machine (SVM), that has as input only one feature, our computed semantic

similarity measure. Similar to the threshold-based classifier, the SVM classifier

searches for one point in this one-dimensional space defined by the input, which

will perform just as our threshold, when analyzing new testing data.

3.8. Performance Results on Lexical Token-based Overlap Metrics

In the current section we report results of our evaluation on some of the similarity

metrics that were presented in this chapter. We experimented with all our datasets

using both symmetric measures, for the MSR and ULPC corpora, and asymmetric

measures, for the RTE corpus. We look at two ways to preprocess the data and

extract the semantic representations: one using the OpenNLP library and the

second one using StanfordNLP. We report performance scores in terms of

accuracy, precision and recall on both the training and testing data. Accuracy is

calculated as the percentage of all instances correctly classified by the system, out

of all instances in the dataset (so this includes both positive and negative

71

instances). Precision is calculated as the percentage of correctly classified positive

instances, out of the total number of positive instances that were classified by the

system. And finally, recall is calculated as the percentage of correctly classified

positive instances, out of the total number of positive instances that are present in

the dataset. All these values are reported as percentage values with three rounded

decimals after the point (e.g., .671 and .548 will approximate to 67% and 55%,

correspondingly). We will also indicate the optimum threshold values that were

found on the training set and then evaluated on the test set.

For aesthetic reasons we will use letter codes to describe all the options that

are used in each of the methods listed. The first letter describes the filtering of

tokens: P means we compare all tokens, including punctuation; W means we

exclude punctuation and compare only words; C means we compare content

words only; S means we use all words, excluding the stop words. Second letter

tells how we compare the tokens: W means we compare them by their original

raw form, B means we compare them by their base form, while P means we

compare only words that have the same part-of-speech and same base form5.

Third letter, tells whether we used case sensitive (S) or insensitive (I) for the

comparison. Fourth letter tells if we used unigrams (U) or bigrams (B) of

consecutive tokens to compare. Fifth letter refers to the global weight used,

whether is IDF-based (I), entropy-based (E) or none at all (N). Sixth letter indicate

the local weight used and there are two options here: word type frequency (F) or

5 We also looked at comparing words with same part of speech and same word
form, but the results were weaker and very close; the close proximity of the
results can be explained by the fact that the morphological information that is
being stripped in the base form, is actually encoded in the POS

72

no local weighting (N). Therefore the name of any method that we experiment

with in this chapter conforms to the following notation:

MethodName = (P |W |C|S).(W |B|P).(S|I).(U |B).(I|E|N).(F |N)

From this notation we see that there are a total of 288 possible combinations (4

x 3 x 2 x 2 x 3 x 2) that we can experiment with, on one dataset and one type of

preprocessing, resulting in a total of 1728 possibilities to explore on all 3 datasets

(MSR, ULPC, RTE) and the 2 types of preprocessing (OpenNLP and

StanfordNLP). It is obviously a rather assiduous task to experiment with all these

possibilities, so we need to do an intelligent search, gradually analyze each option

and see which one works better for a specific corpus, then use it in combination

with the other options.

We start by looking at the MSR corpus, preprocessed with OpenNLP-based

functions. We report performance scores on some of the lexical token-based

overlap methods in Table 3.1. We then discuss on these results and explain why

some of the variants were omitted.

For this initial set of experiments, we found out that a simple combination of

P.B.I.U.N.N. (include all tokens, compare unigrams of base forms, ignore case,

and do not use any weighting) works best for the testing part (.7403 accuracy)

although on the training part the results are actually lower (.7299 accuracy). We

also found out that a combination of words only with compare word form also shows

promising results (W.W.I.U.N.N gives .7357 accuracy on test data). Comparing

tokens using case sensitive mode slightly decreases the accuracy scores on the test

data (although it gives best precision in one case - P.B.C.U.N.N), so does using

same part-of-speech restriction to compare between tokens. We can also see that if

we compare only content words, or only words that are not stop-words then we

73

Table 3.1
Lexical methods on MSR, with OpenNLP parsing and Average-Norm

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
P.W.C.U.N.N. .5517 .7223 .7529 .8765 .7264 .7517 .8788
P.W.I.U.N.N. .5500 .7230 .7408 .9074 .7333 .7438 .9137
P.B.C.U.N.N. .5957 .7282 .7730 .8460 .7258 .7705 .8370
P.B.I.U.N.N. .5660 .7299 .7494 .9016 .7403 .7538 .9050
P.P.I.U.N.N. .5417 .7154 .7488 .8707 .7125 .7457 .8614
W.P.I.U.N.N. .5106 .7176 .7475 .8787 .7165 .7452 .8718
W.B.I.U.N.N. .5490 .7311 .7624 .8743 .7287 .7539 .8788
W.W.I.U.N.N. .5161 .7252 .7437 .9052 .7357 .7470 .9111
W.W.C.U.N.N. .5106 .7230 .7500 .8849 .7351 .7563 .8875
C.W.I.U.N.N. .5161 .6943 .7373 .8503 .6916 .7331 .8431
C.B.I.U.N.N. .5385 .7061 .7467 .8547 .6962 .7354 .8483
S.W.I.U.N.N. .4375 .6953 .7078 .9346 .6997 .7049 .9433
S.B.I.U.N.N. .5333 .7004 .7446 .8471 .7113 .7479 .8535
P.B.I.B.N.N. .2642 .6896 .7155 .8972 .6968 .7161 .9015
P.B.I.B.N.F. .2642 .6894 .7154 .8968 .6974 .7166 .9015
P.B.I.B.E.N. .2119 .6828 .7020 .9215 .6887 .7015 .9259
P.B.I.B.I.N. .1872 .6872 .7037 .9274 .6783 .6947 .9207
W.W.I.B.N.N. .1739 .6882 .6960 .9557 .6904 .6941 .9555
P.B.I.U.N.F. .5778 .7289 .7626 .8692 .7362 .7629 .8753
W.W.I.U.N.F. .5000 .7242 .7355 .9241 .7351 .7399 .9276
P.B.I.U.E.N. .5422 .7061 .7218 .9190 .7107 .7201 .9241
P.B.I.U.I.N. .5274 .7058 .7209 .9212 .7003 .7126 .9207
W.W.I.U.E.N. .5487 .7036 .7246 .9052 .7038 .7190 .9102
W.W.I.U.I.N. .5833 .7034 .7403 .8638 .6986 .7352 .8544

Table 3.2
Lexical methods on MSR, with Stanford parsing and Average-Norm

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
P.B.I.U.N.N. .5806 .7316 .7548 .8925 .7368 .7572 .8893
W.W.I.U.N.N. .5098 .7272 .7398 .9194 .7299 .7383 .9198
S.B.I.U.N.N. .5333 .7085 .7432 .8685 .7049 .7370 .8649
P.B.I.U.N.F. .5778 .7321 .7609 .8798 .7310 .7566 .8779
P.B.I.U.E.N. .5761 .7112 .7349 .8954 .7130 .7349 .8893
P.B.I.U.I.N. .5439 .7100 .7245 .9208 .6968 .7143 .9067
P.B.I.B.N.F. .2609 .6931 .7148 .9077 .6916 .7099 .9067

74

have lower performance, although removing only stop-words seems to have less

detrimental effect on performance. This suggests that function words (e.g.,

articles, conjunctions, auxiliary verbs) are actually important for the problem of

semantic similarity assessment. This was also agreed by Li and colleagues (Li et

al. 2006), that function words, such as the, of, an, are actually important for

sentences because they carry structural information. We also notice, from our

results, that comparing texts by using only bigrams seems to have a detrimental

effect on the accuracy and precision, but it managed to give best recall in one case

(W.W.I.B.N.N). We also see that the optimum threshold found is much lower

than when using unigrams. This is explained by the fact that we are finding much

fewer commonalities between the input texts, when comparing at bigram level.

As an extension to these methods, one might try to combine the unigram and

bigram overlap to see if the scores improve, similarly with some of the MT

evaluation metrics (e.g., BLUE). We will look at this type of metric later in the

dissertation. Finally, concerning the weighting schemas, we found out that in

general performance is decreased when using any kind of weighting, less on the

local weighting and much more on the global weighting. When we compare the

global weighting schemas, we see that using entropy-based weighting gives

better scores than IDF-based weighting.

For our next experiment, we selected a few good and representative methods,

based on the accuracy reported on the test part in Table 3.1, and then we tested

them on MSR again, but this time preprocessed with StanfordNLP. The results for

these methods are listed in Table 3.2. Noticed that the results on data

preprocessed with the OpenNLP are consistently higher on the testing part, than

the data preprocessed with StanfordNLP, although from the results reported on

75

Table 3.3
Lexical methods on MSR, with Stanford parsing and Max-Norm

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
W.W.I.U.N.F. .4828 .7294 .7589 .8783 .7409 .7624 .8867
W.B.I.U.N.F. .5263 .7316 .7783 .8427 .7310 .7756 .8378
W.W.C.U.N.F. .4615 .7274 .7497 .8954 .7310 .7491 .8954
W.B.C.U.N.F. .5000 .7289 .7546 .8870 .7432 .7600 .8971
P.W.I.U.N.F. .5238 .7291 .7632 .8685 .7333 .7669 .8605
P.B.I.U.N.F. .5238 .7282 .7533 .8885 .7397 .7616 .8858
P.B.C.U.N.F. .5238 .7269 .7567 .8780 .7386 .7656 .8745
W.B.I.B.N.F. .1818 .6911 .7001 .9495 .6974 .7007 .9512

training, we see that with StanfordNLP we can do better learning, at least on the

training part.

We do not want to leave a misguided impression to readers that OpenNLP

preprocessing is better than Stanford preprocessing. As a matter of fact, in our

next chapter, where we deal with word-based semantics, we shall see that using a

Stanford-based preprocessing, clearly outperforms the OpenNLP parsing. In

consequence we decided to do more testing with the Stanford parser, using

different normalization factors and other various preprocessing options. In Table

3.3 we report 8 cases of lexical overlap-based methods, when using Stanford

preprocessing and a normalization factor based on the maximum length of the

two input sentences, as in Equation 3.3. What we found out here, is that using

frequency of tokens for the local weighting scheme, consistently give better

accuracy results on the test part. Moreover, we found case where Stanford

performs actually better than OpenNLP, regarding accuracy (.7432 on method

W.B.C.U.N.F. and precision (.7756 on method W.B.I.U.N.F.).

76

Table 3.4
Lexical methods on ULPC, with Average-Norm

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
OpenNLP Processing
P.B.I.U.N.N. .4211 .6411 .6139 .8918 .6253 .6091 .8791
W.W.I.U.N.N. .3571 .6424 .6173 .8769 .6353 .6194 .8645
S.B.I.U.N.N. .4286 .6484 .6193 .8943 .6293 .6106 .8901
P.B.I.U.N.F. .4118 .6438 .6174 .8831 .6092 .6016 .8462
P.B.I.U.E.N. .4884 .6518 .6199 .9067 .6092 .5995 .8608
P.B.I.U.I.N. .5194 .6484 .6201 .8893 .6132 .6026 .8608
P.B.I.B.N.F. .1143 .6237 .6083 .8383 .6072 .6066 .8022
StanfordNLP Processing
P.B.I.U.N.N. .4615 .6471 .6224 .8694 .6192 .6113 .8352
W.W.I.U.N.N. .3846 .6431 .6213 .8570 .6253 .6168 .8315
S.B.I.U.N.N. .4000 .6498 .6144 .9316 .6433 .6156 .9267
P.B.I.U.N.F. .4082 .6444 .6163 .8930 .6212 .6082 .8645
P.B.I.U.E.N. .5414 .6531 .6282 .8657 .6112 .6070 .8205
P.B.I.U.I.N. .5302 .6524 .6202 .9080 .6333 .6148 .8828
P.B.I.B.N.F. .1143 .6231 .6072 .8420 .6112 .6082 .8132

We next evaluated the initial set of methods that were selected to evaluate the

MSR corpus with StanfordNLP preprocessing (while using average sentence

length normalization) on the two other corpora, using both types of preprocessing

and average length normalization. Table 3.4 shows performance scores on the

ULPC corpus, while Table 3.5 shows performance results on the RTE corpus.

We observe that the ULPC corpus tells a different story than MSR. Best

accuracy and recall on test data is achieved with StanfordNLP preprocessing,

where stop words are removed, while best precision is achieved on OpenNLP

preprocessing with all words included. We also note an improvement on

StanfordNLP preprocessing, when using global IDF weighting, in comparison to

using entropy global weighting or no weighting at all. For the RTE corpus, we see

77

Table 3.5
Lexical methods on RTE, with asymmetric normalization (A→ B)

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
OpenNLP Processing
P.B.I.U.N.N. .5909 .6039 .5718 .8470 .6100 .5817 .8512
W.W.I.U.N.N. .5556 .5986 .5749 .7757 .6150 .5985 .7561
S.B.I.U.N.N. .5833 .6095 .5789 .8206 .6475 .6131 .8463
P.B.I.U.N.F. .6000 .6045 .5727 .8422 .6112 .5826 .8512
P.B.I.U.E.N. .6850 .6119 .5839 .7953 .6550 .6184 .8537
P.B.I.U.I.N. .7385 .6063 .5876 .7293 .6338 .6085 .8000
P.B.I.B.N.F. .2000 .5888 .5698 .7451 .6025 .5931 .7146
StanfordNLP Processing
P.B.I.U.N.N. .5909 .6042 .5712 .8549 .6150 .5850 .8561
W.W.I.U.N.N. .6154 .6005 .5899 .6755 .6275 .6267 .6756
S.B.I.U.N.N. .6250 .6114 .5846 .7858 .6400 .6147 .7976
P.B.I.U.N.F. .6190 .6074 .5780 .8132 .6187 .5933 .8146
P.B.I.U.E.N. .6930 .6092 .5811 .7995 .6463 .6132 .8390
P.B.I.U.I.N. .7386 .6076 .5851 .7562 .6288 .6033 .8049
P.B.I.B.N.F. .2000 .5893 .5702 .7456 .5975 .5891 .7098

that using entropy global weighting on lemma and punctuation unigrams gives

us best accuracy and recall with OpenNLP preprocessing, while best precision is

gained from a StanfordNLP preprocessing, using all words and no weighting.

We remind the reader, that the normalization for RTE differs that the other

two corpora, in the sense that we are looking for an asynchronous relation of

semantic similarity from A (first sentence) to B (second sentence). To show that

this normalization actually makes sense for this corpus, we present in Table 3.6

non-standard experiments where we used on the RTE corpus, with OpenNLP

processing, the other two possible types of normalization, one for the symmetric

relation of semantic similarity (used on MSR and ULPC) and the other for the

inversed asymmetric relation from text B to text A). It can be observed that the

78

Table 3.6
Lexical methods on RTE, with OpenNLP parsing and non-standard normalization

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
Symmetric Relation (A↔ B) with Average-Norm
P.B.I.U.N.N. .4727 .5439 .5865 .3166 .5400 .6193 .2659
W.W.I.U.N.N. .3051 .5484 .5486 .5773 .5987 .6282 .5317
S.B.I.U.N.N. .3158 .5630 .5535 .6797 .6313 .6275 .6902
P.B.I.U.N.F. .3333 .5394 .5409 .5588 .6050 .6313 .5512
P.B.I.U.E.N. .3355 .5466 .5342 .7699 .5938 .5822 .7341
P.B.I.U.I.N. .4462 .5426 .5493 .5061 .5863 .6165 .5098
P.B.I.B.N.F. .0444 .5604 .5403 .8454 .5850 .5672 .8024
Inverse Asymmetric Relation (A← B)
P.B.I.U.N.N. .3529 .5251 .5526 .2939 .5300 .6104 .2293
W.W.I.U.N.N. .1277 .5328 .5225 .8285 .5888 .5725 .7805
S.B.I.U.N.N. .1667 .5442 .5316 .7905 .6162 .5925 .8049
P.B.I.U.N.F. .3448 .5214 .5520 .2575 .5225 .6061 .1951
P.B.I.U.E.N. .2015 .5275 .5194 .8106 .5713 .5595 .7683
P.B.I.U.I.N. .1782 .5264 .5174 .8718 .5725 .5552 .8341
P.B.I.B.N.F. .0364 .5551 .5401 .7784 .5975 .5846 .7415

performance numbers reported in this last table are clearly much lower than the

standard normalization which we used in Table 3.5.

Regarding the performance scores on training versus testing we see that, on

the MSR and RTE corpora, most of the methods, which offer good results on the

testing data, have actually lower performance scores on the training data. This

clearly indicates that these methods, due to their simplistic nature, do not tend to

overtrain and that they can generalize pretty well on unknown data.

As a general conclusion on the experiments presented so far in this chapter

we can conclude that choosing the best combination of lexical token overlap is not

always an easy task and it depends much on the type of the data that is being

worked on. The only variants that constantly gave poor performance results were

79

when comparing bigrams of lexical tokens, or when looking at only content

words. This is somewhat expected, because when we rely only on bigrams to

detect similarities between texts we are ignoring a big chunk of useful

information that could be hidden in unigram-to-unigram relations. This

inconvenience can be partially solved by using unigrams and bigrams in

combination to detect semantic similarities between texts.

Relating to other previous work that has been done on these tasks of

paraphrase and entailment recognition, we note that these simple methods, based

on lexical token overlap are working quite well. For example, looking at the

accuracy, on the MSR corpus, our best method (W.B.C.U.N.F. with .7432

accuracy in Table 3.3) is only less than 2% lower than the previously reported

state of the art methods (Androutsopoulos and Malakasiotis 2010); while on the

RTE corpus our best method (P.B.I.U.E.N. with .6550 accuracy) actually

outperforms the best system reported in (Heilman and Smith 2010) with more

than 1%, although the precision is rather quite low in our case (between 3% to 9%

lower).

3.9. Computing IDF values from Wikipedia

In this chapter we have proposed various ways to use the semantic representation

presented in previous chapter, to compare and compute the lexical overlap

between two given texts. In Section 3.4 we presented ways to compute the

similarity measure between the inputs, by using different local and global

weighting schemas for the lexical tokens. One of the global weighting schemas

that we suggested is based on a computed IDF index of lexical terms. In this

section we present our own method to extract the IDF index from a very large

collection of documents. Although we use the index to enhance and improve our

80

methods of measuring the semantic similarity between texts, this index has the

potential to be useful in other types of NLP and IR related tasks.

For our experiments, we use Wikipedia, the largest and most diverse

collection of documents freely available on the Internet, as the source for

calculating the IDF values. We built this index initially for the task of semantic

similarity assessment, as inspired by the work of Corley and Mihalcea (2005),

who used an IDF index built from the British National Corpus to use on the task

of paraphrase identification. The IDF values are calculated from the DF

(document frequency) values extracted from over 2.2 million Wikipedia

documents. To account for the data sparseness factor, augmented by the very high

number of documents available, and keep the normalization of the IDF values

reasonably simple, we will assume that a word can only appear in a maximum of

1 million (106) documents collection. All DF values that exceed the maximum

number of documents are reduced to the maximum accepted value of 106. This

means that for those several words that actually appear in more than 1 million

documents in the Wikipedia collection we will assume the same minimal IDF

value of 0. This also means that the maximum IDF value, on words that appear in

only one document, is log(106) = 6. Therefore, to normalize the values of our

computed IDF index, we would divide them by 6, the maximum possible,

non-normalized IDF value.

For the rest of this section we present details on the process of computing the

IDF values. Besides IDF, we also studied Zipf and Heaps laws. Zipf law is well

explained in (Manning and Schutze 1999). For more details on the Heaps law and

usage of IDF values in Information Retrieval we refer to the book of (Baeza-Yates

and Ribeiro-Neto 1999). Our analysis confirms that Wikipedia collection manifest

the same statistical data as other text collection previously studied by researches.

81

In addition, we approximated the parameters for these functions, which we

consider to be specific to the Wikipedias word collection (as it was at the

beginning of 2008).

3.9.1 Data Preprocessing

As for the task of semantic similarity assessment, data preprocessing is very

important to the process of building the IDF index. At specific points in time, all

current pages from Wikipedia are being saved (or dumped) to huge XML files

which we call Wikipedia database dump files. Each page is stored in an XML

node, called page. The title of the page is stored in the title sub-node, and the

content of the page is saved in the text sub-node, which is located inside the

revision sub-node of the page node. For each page we extract the title and textual

content from the database dump file.

The main issue we had with processing the content of these pages is that this

content is full of extra information used to display the pages in a more

presentable form to the readers. This type of info is not really useful for our task

where we are only interested in the textual content that is presented to the

readers. The extra information is delimited from the rest of the text by using two

main types of enclosing tags: the wiki tags and the html tags. All content enclosed

by these tags had to be removed, before applying further operations to the textual

content encoded in the Wikipedia pages. Below are detailed some of the critical

steps that we did to preprocess the documents:

1. Remove any non printable characters, except the carriage-return character

(”\n”) and convert back to normal form some of the XML special

characters (> , <, ” , &) that are required in future steps to remove content

encoded in XML tags. In some cases, the ”greater than” and ”less than”

82

characters were double encoded, so after replacing back the ampersand

character, we had to try and restore these characters again.

2. Remove any HTML comments that are not displayed to the normal reader6

3. Remove any wiki tables that are stored in the wiki pages. The information

stored in these tables contains mostly numbers and enumerations that we

considered as not being part of the real textual content. If some of the data

represented in the tables is indeed important, then it is usually also

mentioned in the textual part of the page. Therefore any content that is

included within the special wiki table tags delimiters is removed from

further processing7. For similar reasons, also remove any information

contained in the HTML table and gallery tags.

4. Remove any information enclosed in the double braces special wiki tags.

This is usually represented by different Wikipedia variables (e.g.,

CURRENTMONTH) or other types of information that has special

meanings and is not displayed as a normal text to the wiki reader.

6 For some of the pages, the standard HTML comment rules are not followed: we
encountered cases where we had opening comment tags but the closing tags
were missing; as a consequence the rest of the wiki page should have normally
been considered as html comment. But as we noticed, the wiki parser has some
different rules when parsing enclosed html data. When a new section begins in
the wiki page (which is marked by a line that begins with at least two equal
signs - ==), any previously unclosed HTML comments are ignored, and the
following text or section is seen as a normal, uncommented text. We have
applied the same parsing rule when extracting the HTML comments. This rule
is also valid for other wiki enclosing tags that will be described in the following
steps.

7 Again, for special cases, as mentioned in the previous note, we apply the same
special treatment when an enclosing wiki table tag is missing

83

5. We give special treatment to strings of the form: [[label:text]] where label

describes the type of information that is stored in the text part. Depending

on the type of the label, the wiki parser displays different outputs of the

text. The most important type of label is probably the image label, which

displays an image in the current page; and below the image, a textual

description for this image. In such cases, we keep the image description

and remove the rest of the information contained in the string. Other types

of labels include categories or cross-language, for special links; these labels

will not be shown to the wiki reader and therefore we decided to eliminate

them from our preprocessed text. The last type of label that we handle is

when the text string contains the pipe character. In such cases, we found out

that the text after the pipe is usually being displayed in the web page. For

example, this is the case when a word in the page is linked to another word

in the wiki dictionary. Therefore we will keep the text that follows the pipe

character.

6. Remove any http links and references that are included in special wiki

enclosing brackets, but keep the description of the links in the text,

whenever they are available.

7. At this step we remove more HTML tags that do not contain relevant

textual content or do not appear on the page: math, sup, tt, div, span, font, br,

ol, http, blockquote. Also restore any HTML encodings of non-breaking

space characters () to the space character.

8. Remove from the text all wiki links enclosures, which are marked by two

double square brackets (as in ”[[wiki-link]]”; the wiki-link is not removed;

only the brackets). The reason for doing this step is that there are words in

84

Wikipedia which have only a partial part of their lexical form marked as a

wiki link. Therefore, by removing the brackets we restore the full lexical

form of those words.

9. Replace all the special characters except the dash (-), with a space character.

The dash might be contained in some complex words and, as we will show

in our results, some of these words are important to be kept in their full

complex form. We replace the dash character only if it is outside the words

or if there are multiple successive instances of it in the text.

10.As a final step, we convert all letters to lower-case.

From executing all steps enumerated above, we are left with a massive list of

documents that contain only relevant textual content, with words in lower-case

and numbers separated by one or more spaces, and the dash character. We further

ignore the numbers (strings of digits without any letter in their lexical form) and

leave any digits that are connected to tokens that also have letters in their lexical

form. As we found out, there are certain complex words that contain digits and

are frequently used in the literature (e.g., 3-dimensional, 7-eleven, 16-bit).

The last factor which we consider during the preprocessing phase is the

elimination of some pages that are related to Wikipedia’s internal organization.

These pages include redirects, image description pages, templates, category

pages, and pages used for the internal administration of Wikipedia. We think that

by including these pages we risk of introducing a bias on type of textual content

that is present in Wikipedia. Wikipedia has been commended to be one of the

most informative, universal and unbiased collection of document available online

so far, and so we would want to keep this trait still truthful.

85

Table 3.7
Top document frequency values for words that begin with letter/digit

a-i Doc.freq. k-p Doc.freq. r-w Doc.freq
in 1,989,968 of 1,987,234 the 2,076,714
a 1,972,894 on 1,270,135 to 1,617,516
and 1,827,040 links 975,865 was 1,328,853
is 1,771,390 one 709,560 s 1,184,194
for 1,334,793 or 666,671 with 1,180,794
by 1,273,100 new 594,233 that 902,551

3.9.2 Statistical results

We calculated the IDF values for all the lexical tokens in the Wikipedia collection,

as it was at the beginning of 2008. We considered a lexical token to be a string of

characters without any spaces, containing at least one letter and might also

contain digits and the dash (”-”) sign. The only changes to the original texts were

described in the previous subsection (we have not applied any stemming or other

similar transformation functions to the words).

After the preprocessing phase, we obtained a collection of 2,225,726

documents, from which a total of 5,237,779 are considered distinct words, with

the restrictions mentioned before. Table 3.7 lists the most common (or less

specific) words used in Wikipedia, and their associated document frequency values.

In Figure 3.1, we report a graph on the distribution of words in Wikipedia,

based on their first letter. If a word begins with a digit we include that in the

category noted with ” ”. Because the numbers of words beginning with the letters

j,q,x,y and z were much lower than the rest, we combined their sets together and

report the total count number under the jqxyz category.

We looked at a couple of reasons why the number of distinct words is so high.

We suspect that this is mainly because Wikipedia contains a lot of proper nouns,

86

400000

500000

600000

0

100000

200000

300000

a b c d e f g h i k l m n o p r s t u v w jqxyz _

Figure 3.1
Number of distinct words in Wikipedia grouped on the first character

which were also included in our counting. Since Wikipedia is a universal

collection of informative documents, we expect that every name used by

mankind that is somewhat worth mentioning in an encyclopedia, will be part of

this collection. Also, words were not transformed to their base form, and there are

many complex words (e.g., two or more words separated by dash characters) that

were counted as separate words. We argue that complex words are equally

important when building an IDF index and to support this, we list here some of

the most common complex words we found on Wikipedia, along with their

associated document frequency values: non-families (36,588), well-known (31,296),

so-called (18,866), non-profit (13,062), short-lived(12,411) and full-time (12,101). Also,

sometimes words that were misspelled are counted more than once.

One way to reduce the vocabulary of the LSA index by a significant amount,

and not affecting the LSA values too much is to add a restrictive condition to

include only words that appear in at least two documents in the Wikipedia

collection. This restriction greatly reduces the number of distinct words by a

factor of 2.47. By applying this condition we obtain a total of 2,118,550 distinct

words, with the distribution of words based on their first letter very similar to the

87

40000000

50000000

60000000

0

10000000

20000000

30000000

1 11 21 31 41 51 61 71 81 91

500000

600000

700000

800000

0

100000

200000

300000

400000

101 201 301 401 501 601 701 801 901

Figure 3.2
Zipfian distribution on the most frequent 1000 words in Wikipedia collection

one reported in Table 3.1, with one exception on the set of words that begin with a

digit, where the number is reduced by a factor of 3.58.

In Figure 3.2 we report the Zipfian distribution for the top 1000 most frequent

words found in our preprocessed Wikipedia collection. The Zipfian values were

calculated by counting the frequency of every word that was used in collection.

This also includes how many times a word appears in one document. The top 5

most frequent words in the collection are: the, of, and, in, a. To have a better view

of the distribution, we display it in two graphs, one for the first 100 words, and

the second for the next 900 words. We also empirically approximate the values of

the two parameters a and b from the Zipfs Law function (Zipf(n) = a / nb). The

solid line represents the Wikipedia distribution for top 1000 words and the dotted

line represents the Zipf’s Law function for a = 40,000,000 and b = 0.88.

88

4000000

5000000

6000000

0

1000000

2000000

3000000

1 6 11 16 21 26 31 36 41 46

120000

140000

160000

180000

0

20000

40000

60000

80000

100000

51 101 151 201 251 301 351 401 451

Figure 3.3
Zipfian distribution on the H(n) function for first 500 points

To remain in the Zipfian distribution context, in Figure 3.3 we show an

interesting distribution, calculated from the document frequency of words, that

looks similar to our previously calculated Zip’s Law. We start by counting all

words that appear in at least one document in the collection, then counting all

words that appear in at least two documents, then, words that appear in at least

three documents, and so on. We define the function H(n) that will tell how many

words appear in at least n documents in the Wikipedia collection. Figure 3.3

report the distribution of this function with a solid line, for the first 500 values of

n. Like before, we approximate the function with a Zipfian distribution,

represented with a dotted line, for the following parameter values: a = 5,300,000

and b = 0.88 (interestingly note that b is same as before).

89

1200000

1400000

1600000

1800000

2000000

0

200000

400000

600000

800000

1000000

1200000

1 201 401 601 801 1001 1201 1401 1601 1801 2001

Figure 3.4
Heap’s Law distribution on the Wikipedia collection (for the first 200 million
words)

Lastly, we report the Heap’s Law distribution for the Wikipedia collection.

This function tell us how the vocabulary increases in size, proportional to the size

of the collection. When we calculate the size of the collection, we take all

documents in the collection, combine them together in one single document and

count the number of words used so far in the text. The values for the Heap’s Law

distribution are calculated using the formula: Va,b(n) = a * nb, where n is the size of

the text, and a and b are free parameters, which we determine empirically. Figure

3.4 shows the Heap distribution (with a solid line) for the first 200 million points

of the function (incremented by a factor of 10,000). With a dotted line we show the

function calculated with Heap’s Law where the free parameters have the

following values: a = 16 and b = 0.6.

3.9.3 Implementation

We created Perl scripts, to parse and preprocess the Wikipedia database dump

file. From this step (which took about 3 hours on a 3.40GHz Pentium system) we

managed to reduce the initial size of the file (of approx 14GB) to half. Extracting

the IDF index (i.e., counting the document frequency for all words) took 2 full days.

90

CHAPTER 4

WORD-TO-WORD SEMANTICS

4.1. Introduction

The idea of lexical token matching, presented in previous chapter, can be

expanded by using some word-to-word (W2W) semantic similarity metrics

instead of simple word matching or synonymy information in a thesaurus as in

(Qiu, Kan, and Chua 2006; Rus et al. 2008a). The word-to-word similarity metrics

can identify semantically related words even if the words are not identical or

synonyms. A good package to calculate these metrics is the WordNet similarity

package (Pedersen, Patwardhan, and Michelizzi 2004). WordNet similarity

metrics rely on statistical information derived from corpora and lexico-semantic

information from WordNet (Miller 1995), a lexical database of English. The basic

idea behind the WordNet similarity metrics is that the closer the distance in

WordNet between words/concepts is, the more similar they are. For instance, in

the following example taken from MSR corpus (Dolan, Quirk, and Brockett 2004)

semantic relationship between the words insist and say cannot be established

using simple direct matching or synonymy. On the other hand, there is a

relatively short path of three nodes in WordNet from say to insist via assert,

indicating say and insist are semantically close.

Text A: York had no problem with MTAs insisting the decision to shift

funds had been within its legal rights.

Text B: York had no problem with MTAs saying the decision to shift funds

was within its powers.

91

Another measure to approximate word-to-word (W2W) semantic similarity,

which has been extensively used in the literature (Dumais 1991; Nakov, Popova,

and Mateev 2001; Graesser et al. 2007; McNamara, Boonthum, and Millis 2007;

Dessus 2009) is Latent Semantic Analysis (in short, LSA). In Chapter 2, Section

2.4.2, we introduced LSA as a component of our semantic representation

structure. We presented useful properties and drawbacks for using this type of

vectorial representation to represent the meaning of words. We also detailed on

how to extract the LSA vectors and construct an LSA space from a given

collection of documents. In this chapter we present two different methods of how

to use LSA when computing semantic similarity between texts. In the first method

we use LSA the same way as when using WordNet Similarity metrics (further

detailed in Section 4.5), to match and pair semantically similar words. We use the

cosine between two LSA vectors to compute the semantic similarity between their

corresponding words. The second approach (see Section 4.8) makes use of the

LSA vectorial representations for words in a text. We combine these vectors

through a weighted sum to create a representative vector for the whole text. Then,

likewise as for the word level, we compute the semantic similarity between the

two texts using the cosine between their representative vectors. In particular, we

investigate the impact of several local and global weighting schemas on Latent

Semantic Analysis’ (LSA) ability to capture semantic similarity between two texts.

When comparing to our previous methods of simple lexical overlap, we see

that by including word-based semantics to measure semantic similarity between

texts, we are faced with new challenges. The main challenge here would be to

find a cheap and effective way to pair words. Suppose we have the following two

input texts that, in most contexts, should convey the same message:

92

Text A: My pet enjoys playing with your dog.

Text B: My cat likes to play with your pet.

For our previous methods of simple lexical matching, the problem of pairing

is trivial: find any two identical words from both texts and pair them; then find

another two words, and so on. Using this method in our example we find that the

following words can be paired: my, pet, with, your and play, if we use the base form

of words. Ideally, we should also be able to pair enjoys with likes, which can be

easily done by using synonymy information. The real problem we are faced with

in this example is regarding the words dog and cat, which should be paired with

their correspondent pets from the other sentence. However, if we look at pairing

identical words first, as in a greedy approach, then the two pet words (from both

sentences) will be already paired, by the time we are trying to find pairs for cat

and dog. To solve this issue, we should look at all words in the text and try to find

the optimal matching, according to a particular function of word-based semantic

similarity. Word-based semantic similarity metrics provide normalized values

that can tell, on a scale of 0 to 1, how close two words are in their meaning.

Identical words and synonyms are considered to have a word-to-word similarity

of 1. For our example, we would need a metric that has preference on pairing

cat-pet and dog-pet, instead of pet-pet and cat-dog. Unfortunately, most metrics that

will be studied in this chapter, are not able to find such subtle differences in

meaning, since semantically speaking, the words dog and cat are also somewhat

close in meaning, both characterizing some kind of animal or pet. We exemplify

this in Table 4.1 for three representative W2W metrics, LSA (Landauer et al. 2007),

Lin (Lin 1998) and HirstStOnge (Hirst and St-Onge 1998).

93

Table 4.1
Computing optimal word pairing for W2W similarity metrics

Word pairs LSA Lin HirstStOnge
pet-pet 1 1 1
pet-cat .508 .481 .2500
pet-dog .479 .504 .2500
dog-cat .140 .886 .1875
Average(pet-pet; dog-cat) .5700 .9430 .5937
Average(pet-cat; pet-dog) .4935 .4925 .2500

If there is no other option than to accept this issue of our current W2W

metrics, then there is one option that one could use to improve the optimal

matching, while still using these W2W metrics. The idea is to also look at the

context of the words when matching them. The context is composed of other

words surrounding the ones we are trying to match, or words which have

syntactic relations with. For our example, if we try to pair the words cat, dog and

pet, while looking at their corresponding pronouns, we would be more inclined to

pair (your) dog with (your) pet, and (my) cat with (my) pet than the other way. In

this current work, we do not further explore this option, leaving it for future

research.

Our experiments showed that such examples, where optimal matching is

needed, are very rare in practice, and in most cases, using a simple greedy

approach for pairing similar words should be fairly sufficient. In the greedy

approach, if L1 is the list of words from first text, and L2 is the list of words from

the second text, then a word from L1 should be paired with one word from L2,

with whom it has the maximum semantic similarity within all the other words in

L2 (according to the chosen W2W metric). For the optimal matching approach we

need to solve the classic assignment problem, which can be solved in polynomial

94

time using the Hungarian Algorithm. We give more details on this approach and

present some experimental results with it in Section 4.7.

There is another concern that we need to be aware of, when using W2W

similarity metrics. Most W2W metrics do not pay attention to the agreement

factor between words, such as synonyms versus antonyms. We have previously

raised this problem, in Section 1.3, when we defined a normalized metric of

semantic similarity between words. For example, if we take the following two

synonym words, refuse and reject and we calculate the similarity between them,

based on the LSA metric, this gives us a similarity score of .0730, which is pretty

low, considering that the words are actually synonyms in the WordNet database1.

When comparing the word reject with its most common antonym, accept, then

LSA tells us that the words are similar at .4025, on a normalized scale. This is

contra-intuitive, and confirms the fact that LSA is in general less concerned about

how two words agree on each other, and more attentive on how two words are

being used in similar contexts. Similarly, for WordNet measures, none of those

metrics operate on any kind of parameter that measures how much two words

agree or disagree with each other.

4.2. WordNet Similarity

The word relatedness measures in WordNet Similarity rely on lexico-semantic

information in WordNet to decide semantic similarity words. In WordNet, words

that have the same meaning, i.e., synonyms, are grouped into synsets, or

synonymous sets. For instance, the synset of affectionate, fond, lovesome, tender,

1 Most WordNet-based measures will output a normalized similarity score of 1
between synonym words, like refuse and reject

95

body part

organ body

contractile organ,
contractor

muscle, musculus

hypernymy hypernymy

hypernymy

hypernymy

Figure 4.1
A snapshot of the WordNet taxonomy for nouns.

warm corresponds to the concept of having or displaying warmth or affection, which

is the definition of the concept in WordNet. Each concept has attached to it a

gloss: its definition and several usage examples. Words can belong to more than

one synset (or concept), which is the case when they have more than one

meaning. For example, the adjective warm belongs to 10 different concepts, each

representing a different meaning of the word. In WordNet, concepts are linked via

lexico-semantic relations such as hypernymy (is-a), hyponymy (reverse is-a), and

meronymy (part-of). The nouns and verbs are organized into a hierarchy, or

taxonomy, using the hypernymy relation. We show a snapshot of the WordNet

hierarchy in Figure 1. WordNet contains only content words: nouns, verbs,

adjectives, and adverbs.

WordNet has been used extensively to measure how similar two concepts are

(Pedersen, Patwardhan, and Michelizzi 2004). In general, the underlying principle

used in WordNet-based similarity measures is that two concepts are semantically

more related if they are closer to each other in WordNet. For instance, the concept

of muscle, musculus is more related to the concept of contractile organ, contractor

than to body (see Figure 4.1). The reason is that the former two concepts are one

hypernymy link away while the latter two are four links away (including one

96

change of direction while following the hypernymy link between body part and

body). The existing WordNet measures are usually divided into two groups:

similarity measures and relatedness measures. The similarity measures are

limited to concepts within the same taxonomy. That is, they can only compute

similarity between words that are part of the same hierarchy of hypernymy

relations (i.e., nouns or verbs). This limitation comes from the fact that similarity

measures are based on the is-a relation, which is only used among nouns and

among verbs in WordNet. As such, the similarity-based measures cannot be

applied to adjectives and adverbs. The text relatedness measures are based on all

types of relations in WordNet and thus can be used to compute similarity among

words belonging to different category, e.g., between nouns and adjectives. Note

that the way, in which the two concepts of similarity and relatedness are defined

in WordNet, is similar to how we previously defined these relations in the

introductory chapter of this dissertation (see Section 1.3). Therefore, we expect

words that are considered to be close, according to some relation of semantic

relatedness in WordNet, to convey similar meanings (i.e., to simulate vs.

simulation) or at least be close in meaning (i.e., happy vs. joy or excitement).

4.2.1 WordNet Similarity Measures

In this subsection, based on the work of Corley and Mihalcea (2005), we detail six

of the WordNet similarity measures that were available in the WordNet Similarity

package (Pedersen, Patwardhan, and Michelizzi 2004) and that we experimented

with. As previously mentioned, these measures can only be computed among

content words which belong to the same taxonomy of concepts (e.g., noun vs.

noun; or verb vs. verb).

97

Path length (path) is a simple counting scheme of nodes between two given

concepts. This score is inversely proportional to the number of nodes along the

shortest path between the synsets (see Equation 4.1, where length defines the

shortest path). When comparing two words from the same synset, then the

shortest possible path between them is considered to be 1. Therefore the

maximum possible value for this metric is 1, and there is no further need to

normalize it.

Simpath =
1

length
(4.1)

Leacock and Chodorow (lch) (Leacock and Chodorow 1998) extends the Path

measure by applying a logarithm funtion, while also accounting for the depth of

the taxonomy where the concepts are located. The maximum depth of the

taxonomy is noted by D in Equation 4.2 of the lch measure. The maximum value

of this measure depends on the depth of the taxonomy. For nouns we calculated

this to be 3.6889, while for verbs the maximum is 3.3322. We normalize the lch

measure by dividing it to the appropriate values.

Simlch = −log length
2 ∗D

(4.2)

Wu and Palmer (wup) (Wu and Palmer 1994) measure is based on the

computed depths of the two concepts and the least common subsumer (LCS)

between the concepts (see Equation 4.3). LCS represents the deepest node in the

taxonomy that is a hypernym for both concepts. From this definition we notice

that all possible values of the wup measure are between 0 and 1, so there is no

need to normalize this further.

98

Simwup =
2 ∗ depth(LCS)

depth(concept1) + depth(contept2)
(4.3)

For the next three measures, we need to define the information content (IC) of a

concept, as shown in Equation 4.4, where P (c) is the probability of encountering

an instance of concept c in a large corpus. The probability for the IC was

pre-computed from various corpora (such as the British National Corpus, the

Penn Treebank, the Brown Corpus, the complete works of Shakespeare, and

SemCor) and provided along with the WordNet Similarity package.

IC(c) = −logP (c) (4.4)

Resnik (res) (Resnik 1995) calculates the information content (IC) of the LCS

of two contents (see Equation 4.5). This measure needs to be normalized in order

to be used by our methods. We empirically found that the maximum IC for any

concept used in our datasets is 11.76576, therefore we used this value to normalize

the metric.

Simres = IC(LCS) (4.5)

Lin (lin) (Lin 1998) measure builds on Resnik measure and adds a

normalization factor based on the IC of the concepts that we compare (see

Equation 4.6). There is no need to normalize this measure further.

Simlin =
2 ∗ IC(LCS)

IC(concept1) + IC(concept2)
(4.6)

Jiang and Conrath (jcn) (Jiang and Conrath 1997) is the last measure that we

experiment with. Equation 4.7 shows how to compute the jcn measure, based on

99

the IC and the LCS between two concepts. We found that sometimes this measure

goes beyond the maximum normalized boundary of 1, and this happens for

concepts which are so close in meaning that the denominator becomes less than 1.

For such cases, we normalize the jcn values to a fixed value or 0.9999, since this is

for input words that are really close in meaning but still not identical.

Simjcn =
1

IC(concept1) + IC(concept2)− 2 ∗ IC(LCS)
(4.7)

4.2.2 WordNet Relatedness Measures

The second group of WordNet metrics are called measures of relatedness

(Pedersen, Patwardhan, and Michelizzi 2004), since they can be made across part

of speech boundaries and are not limited to is-a relations. So they allow

computing semantic similarities between concepts from different categories, or

parts-of-speech (e.g., nouns vs. verbs). This cross-category feature provides a

significant advantage over the metrics presented in previous subsection. For

instance, looking back at the example provided in Section 1.6.2, the semantic

similarity between the adjective warmer in the SE and the noun heat in the textbase

T, can be computed with relatedness measures but not with similarity measures.

The downside of these measures is that they are very slow, making it particularly

difficult for us to experiment with them. The following word relatedness

measures are available: HSO (Hirst and St-Onge 1998), LESK (Banerjee and

Pedersen 2003), and VECTOR (Patwardhan 2003). Given two WordNet nodes, i.e.,

concepts, these measures provide a real value indicating how semantically related

the two concepts are.

The HSO measure is path based, i.e., uses the relations between concepts, and

assigns relations in WordNet a direction. For example, is-a relation is upwards,

100

while has-part relation is horizontal. The relatedness between two concepts is

derived by finding a path between them that is neither too long nor that changes

direction too often. The LESK and VECTOR measures are gloss-based. That is,

they use the text of the gloss as the source of meaning for the underlying concept.

The LESK measure computes the overlap between the glosses of two concepts, as

well as concepts that are directly linked to them in WordNet. The VECTOR

measure creates a co-occurrence matrix from a corpus made up of WordNet

glosses. Each content word used in a WordNet gloss has an associated context

vector. Each gloss is represented by a gloss vector that is the average of all the

context vectors of the words found in the gloss. Relatedness between concepts is

measured by finding the cosine between a pair of gloss vectors.

Because of the complexity of these measures, which makes the process for

computing them exceedingly slow, we found it difficult to experiment with them,

on all of our datasets. Therefore, this dissertation contain only a few preliminary

results (see Section 4.4) that we obtained, using these measure on the ULPC

corpus (previously introduced in Section 1.6.2). Specifically, we present

correlation numbers between these metrics and several dimensions of text-to-text

semantic similarity relations that the ULPC corpus provides. Similar to our

previous WordNet-based measures, the text relatedness measures are normalized

by calculating the relatedness scores between any two words in the ULPC corpus

(one in the textbase T and the other in the SE) and then taking the maximum. For

instance, the HSO measure leads to a maximum similarity score of 16.

In agreement with what we said in the introductory part of this section, the

W2W relatedness measures do not exploit the full potential of WordNet as for

instance, good and bad are as similar as bad and evil. Using VECTOR as the

measure, we get relatedness values of 0.7185 and 0.7142, respectively. This is

101

simply the case because the W2W relatedness measures only account for the

number and eventually direction of the links but not the label of the links.

Between good and bad there is antonymy relation, while between bad and evil there

is similar-to relation.

4.3. From Words to Concepts: Solving Word Sense Disambiguation

Before extending word-to-word (W2W) semantic similarity measures into

text-to-text (T2T) semantic similarity measures, we need to clarify one issue that

we are confronted with, particularly when using WordNet similarity measure,

which is to convert a similarity between concepts into a similarity between words.

In the case of LSA, the problem is simple, since each word is already assigned an

LSA vector, and the cosine between two LSA vectors will give us the semantic

similarity between their corresponding words. In case of WordNet similarity

measure, the problem is a bit trickier. Given that texts express meaning using

words and not concepts, we are faced with the challenge of mapping words from

the input text to their corresponding concepts in WordNet. We are therefore faced

with a word sense disambiguation (WSD) problem. It is beyond the scope of this

work to fully solve the WSD problem, one of the hardest in the area of Natural

Language Processing. Instead, we address the issue in two simple ways: (1) map

the words from the input texts unto concepts corresponding to their most

frequent sense, which is sense #1 in WordNet, and (2) map words onto all the

concepts corresponding to all the senses and then take the maximum of all W2W

relatedness scores for each pair of senses. In our experiments we label the

decision of choosing one of these two ways, as the WSD decision and we label the

first word sense disambiguation technique as ONE, i.e., sense one, whereas the

latter is labeled as ALL, i.e., all senses of a word. Thus, the semantic similarity

102

between two words is the W2W similarity between the concepts corresponding to

the first senses of the words (for WSD option ONE) or the maximum over the

W2W similarity scores obtained for all possible pairs of senses for the two words

(for WSD option ALL).

4.4. Preliminary Results with WordNet Relatedness Measures on ULPC

This section describes a preliminary experiment with using WordNet relatedness

measures to automatically assess student self-explanations in the intelligent

tutoring system iStart, which we previously introduced in section 1.6.2. This

approach is based on measuring the semantic similarity between a

self-explanation (SE) and a reference text, called the textbase T (see Section 1.6.2

for a concrete example of T-SE pairs). The challenge is to decide, for instance,

whether the SE is a paraphrase of the textbase T. Assessing the student

self-explanations (SEs) is a critical step in iSTART because it is based on this

assessment that the tutoring system could detect possible student

misunderstandings and provide the necessary corrective feedback.

The semantic similarity is estimated using word relatedness measures, which

rely on knowledge encoded in WordNet (Miller 1995). We also experimented with

weighting words based on their importance, which is characterized by their

corresponding IDF values computed from Wikipedia (see Section 3.9 for more

details on these IDF values and how they were collected). The goal of this

experiment was to answer the following two research questions: (1) are

WordNet-based T2T relatedness measures competitive when compared to other

approaches such as LSA and the Entailer and (2) is IDF-weighting important.

In addition, we compare the proposed algorithms to other approaches,

namely LSA (Landauer et al. 2007) and the Entailer (Rus et al. 2008b). The LSA

103

approach is based on representing texts into vectors in an LSA space (the LSA

space dimensions, usually 300-500) which is automatically derived from large

collection of texts using singular value decomposition (SVD), a technique for

dimensionality reduction (see section 4.8.1 for more details about this). In Section

4.8 we work with a very similar method that uses LSA for vectorial representation

of the input texts. The Entailer is an approach that relies on both lexical and

syntactic information to detect text-to-text semantic relations among sentences.

The Entailer proved to be quite successful according to several recent studies (Rus

and Graesser 2007; Rus et al. 2008b).

4.4.1 Methods

We experimented with two methods of using W2W relatedness measures,

depending on whether IDF weighting is being used or not. In the following, we

denote with wnrel(v, w) a generic relatedness function between concepts v and w

which would mean any of the three WordNet relatedness measures that were

previously described in subsection 4.2.2.

Method 1. In this method, we extend the W2W measures to compute the

relatedness between the textbase T and SE, i.e., to a T2T relatedness measure, by

assessing how close the concepts in the textbase T are to the concepts the student

articulates in the SE. A T-SE relatedness, WNrel−score(T, SE), is computed by

taking the average of the best W2W relatedness scores between a textbase word

and any word in the SE (see Equation 4.8). For words that have a direct match in

the SE we assign the maximum relatedness score, which is 1 after normalization.

WNrel−score(T, SE) =

∑
v∈T maxw∈SE{wnrel(v, w)}

|T |
(4.8)

104

Method 2. This second method differs from the previous one in that each

word in the textbase is weighted by its importance (see WNIDF−rel−score(T, SE) in

Equation 4.9). The importance of a word is approximated using its specificity, or

its IDF value. That is, the more specific a word is the most important that word is

from the point of view of discovery semantic relations between texts. In other

words, if a very specific term is mentioned in the textbase it should be mentioned

directly or through a closely related concept in the SE.

WNIDF−rel−score(T, SE) =

∑
v∈T idf(v) ∗maxw∈SE{wnrel(v, w)}∑

v∈T idf(v)
(4.9)

4.4.2 Results

We used in our experiments the 1998 pairs of Textbase-SE in the ULPC (McCarthy

and McNamara 2009). We evaluated the performance of the proposed methods

along six of the ten dimensions of analysis available in the ULPC: elaboration,

semantic completeness, entailment, lexical similarity, and paraphrase quality. As

previously mentioned in subsection 1.6.2, dimensions such as Garbage are of not

relevant for T2T relation detection. It should be noted that some of these

dimensions, e.g., elaboration, semantic completeness, and paraphrase quality,

have meanings that need be specified as they are not obvious or they differ from

definitions used by others. Elaboration refers to SEs regarding the theme of the

textbase rather than a restatement of the sentence. Semantic completeness refers

to an SE having the same meaning as the textbase, regardless of word- or

structural-overlap. Paraphrase quality takes into account semantic-overlap,

syntactical variation, and writing quality. Given these definitions, the semantic

completeness dimension in ULPC is equivalent of the paraphrase definition in the

MSR corpus (Dolan, Quirk, and Brockett 2004).

105

Table 4.2
Correlations among Methods 1 and 2, human judgments, LSA, and Entailer.

Method Elab Sem-C Ent Lex-sim Par-Q W-Q
ONEHSO -.156 .556 .515 .791 .318 .447
ONELESK -.160 .550 .507 .784 .310 .441
ONEVECTOR -.137 .567 .531 .800 .341 .495
ONEIDFHSO -.171 .585 .539 .798 .387 .464
ONEIDFLESK -.179 .576 .526 .792 .374 .456
ONEIDFVECTOR -.149 .603 .563 .812 .422 .530
ALLHSO@ -.238* .459 .422 .752 .081 .428
ALLLESK -.146 .560 .517 .788 .323 .459
ALLVECTOR -.110 .575 .541 .791 .362 .529
ALLIDFHSO@ -.233* .476 .467 .734 .140! .415
ALLIDFLESK -.161 .583 .534 .792 .386 .473
ALLIDFVECTOR -.113 .606 .568 .794 .443 .568
LSAassa -.175 .555 .535 .804 .410 .498
R-Ent -.177 .564 .512 .776 .321 .425
F-Ent -.212 .449 .441 .726 .269 .405
A-Ent -.204 .529 .497 .785 .308 .434

We have explored a space of 3x2x2=12 T2T solutions as a result of combining

three relatedness measures (HSO, LESK, and VECTOR), two word sense

disambiguation methods (ONE and ALL), and the two text-to-text relatedness

methods (with and without IDF-weighting). We use the implementation of the

HSO, LESK, and VECTOR measures from the WordNet::Similarity package

(Pedersen, Patwardhan, and Michelizzi 2004). We looked first at correlations

between the 12 solutions and human judgments. The correlation values are

shown in Table 4.2 where the columns represent the five evaluation dimensions

from ULPC mentioned above and the rows are different solutions. For instance,

the row ALLIDFLESK means ALL the senses of words were used to compute

relatedness between words, IDF weighting was active, and the relatedness

measure used was LESK. When no IDF is mentioned it indicates no word

106

weighting was used (Method 1). We also show in the table the correlation

coefficients for LSA, and three variants of the Entailer, which were simply taken

from the ULPC package, which includes the output for LSA and the Entailer on

the dataset. We only picked these four external approaches because they were

best correlated with human judgments (McCarthy and McNamara 2009) on the

dimensions of interest for us.

Taking a quick glance at the results, we see that, in general, word weighting

leads to better models compared to non-weighting models, correlation-wise. The

same can be said about considering all senses of a word when computing W2W

relatedness measures which, in most part, gives better correlation numbers than

looking at only the most common sense of words.

4.5. Extending Lexical Methods with Word Semantics

In this section we present how to extend the lexical similarity methods described

in previous chapter, with word-to-word semantic similarity measures that were

introduced in the first part of this chapter.

For our previous methods, based on lexical token overlap, the core approach

was to match lexical tokens from both input texts and then count them in order to

measure how lexically similar the two texts are. Matching the lexical tokens was

done on a simple binary, decision-based level, meaning two given tokens were

either similar, and therefore could be matched, or not. Current chapter suggests

that comparing and matching tokens could be done based on a normalized scale

of similarity, as follows: given two input texts, A and B, for which we need to

measure the degree of semantic similarity between them, and assuming that there

is a metric, ℜ, which measure the degree of similarity between any two given

lexical tokens, then a token v from A should be matched with a token w from B

107

that is the closest to v, according to the metric ℜ. We call this the greedy matching

approach. So far, this approach is similar to the ones described in Equations 4.8

and 4.9, in the previous section.

We now introduce two new conditions that need to be respected for a match

to be possible. First, the two tokens, v and w, need not be already matched with

other tokens. Second, the computed similarity between them needs to be above a

certain threshold value, which we note with Thsim (one default value for this

Thsim which proved to be good enough in our experiments is 0.5) . The first

condition assures us that we are doing a 1-to-1 match of tokens between the two

inputs, while second condition is needed to make sure that we are not matching

tokens which are specific to only one text and should not be matched in the other

(i.e., words such as brief in Text A and team in Text B, from the first example given

in the introductory section of Chapter 1).

Once the two tokens v and w have been matched, we then compute their

contribution to the total similarity score between A and B, as a direct proportional

value to the degree of their similarity, based on the metric ℜ. After all possible

matches have been found and a final similarity score has been computed, we

normalize this score as previously described in Chapter 3.7, by dividing it to some

value that relates to the total number of tokens which are present in the input

texts.

We now exemplify this general approach on the first example given in the

introductory part of this chapter. After tokenization, ignoring the ending

punctuation, and converting all lexical tokens to their base form, in lower case,

we are left with the following pair of preprocessed sentences:

108

Text A: york had no problem with mta s insist the decision to shift fund

have been within its legal rights

Text B: york have no problem with mta s say the decision to shift fund be

within its power

Now, we pair all identical tokens into 15 perfect pairs, after which the

following tokens are left unpaired:

Text A: insist have legal rights

Text B: say power

Next, we use the lch similarity measure from WordNet (Equation 4.2) to pair

the two words from Text B with their closest words from Text A. We find that say

is matched with insist with a similarity measure of .67 and power is matched with

rights with a similarity score of .51. Since both similarity values are above our

default Thsim value of 0.5, we can accept both matches as pairs and calculate the

final similarity score accordingly: Simtotal = 15 + .067 + .51 = 16.18. At last, we

normalize this score, using Max-Norm (see Section 3.6), by dividing it to the total

number of tokens from the longer Text A and we get a final, normalized similarity

score of SimMax−Norm = 16.18/19 = .852 between the two initial inputs.

4.6. Performance Results on Greedy Methods based on Word Semantics

The methods that we experiment with in this section, we call them greedy because

they are based on a greedy matching approach (as was described in previous

section) of lexical tokens that are believed to be semantically close, according to

some W2W similarity metric. As was previously suggested in introductory part of

this chapter, there is another type of matching that can be done, which is to find

the optimal matching between the tokens of the two inputs, according to some

109

given W2W metric. We shall study this other type of matching in the section

which follows after this.

Again, we are faced with a similar problem as in the previous chapter, which

is that there are too many options to explore. In previous Section 3.8 we noted

that there are 288 possible combinations of lexical methods to explore, for one

dataset, one normalization and one type of preprocessing. Now we have two

more parameters that we need to consider: a) a total of 7 W2W similarity metrics

(i.e., path, lch, wup, res, lin, jcn of WordNet-based similarity measures, and LSA);

and b) two WSD methods to map words into concepts, when using the

WordNet-based W2W measures (i.e., WSDone and WSDall). This multiplies our

initial search space by almost 14 times. Therefore we decided to select only a few

of the lexical-based methods that were previously experimented with, and extend

them with the W2W similarity metrics. We did an empirical analysis of the data,

and found out that, in general, those lexical-based methods which offered best

precision scores on the test data, report an improvement in performance, both in

terms of accuracy and precision, when enhanced with W2W semantic measures.

To conclude, we selected best combination of lexical-based methods, in terms

of precision on the test data, and evaluate them on both types of preprocessing,

OpenNLP and Stanford. We also experimented with altering the default Thsim

value for accepting a found match as a similarity pair. In general we found that a

value of 0.5 for Thsim works best in most cases, and so we used this values in all

experiments presented in this chapter.

Another detail that we must consider for our experiments is on how to

compare the base form of the words. For WordNet similarity metrics, the solution

is already solved, since WordNet considers only the lemma form of words when

looking at their corresponding concepts in its database. So the only difference

110

when comparing the initial raw forms of words versus their base forms is when

we are initially looking for perfectly identical pairs of tokens, that is before

matching the remained unpaired tokens based on a selected semantic similarity

measure. For LSA however, the words are encoded into the LSA space in their

original raw form. Therefore we had to consider all words in the dataset that

converge to the same base form, take their corresponding LSA vectors, and

combine then into a single vector that will reflect the meaning of their base form

(by combining, we mean do a weighted sum of these vectors - the weight is based

on a precomputed entropy of the participating words - and then normalize the

output vector).

Tables 4.3 and 4.4 present performance scores on the MSR corpus, when using

OpenNLP and Stanford preprocessing, accordingly. The format of these tables

follows the same format as in Section 3.8. We experimented with both WSD

options for the WordNet based metrics (marked with WSDone for choosing the

most common sense of a word, and WSDall for looking at all senses of a word).

When comparing between the two WSD methods we see that using all senses

of a word gives better accuracy results on the testing data, although there is a

better precision when using WSDone option, with the lch metric. When looking at

the different metrics used, we see that the lch measure gives us better scores than

the other measures, in terms of accuracy and precision. Also using Stanford

preprocessing seems to work better than OpenNLP when including word

semantic measures. We see that a WSDall approach, with lch, gives us best

accuracy on test, obtained so far on MSR - .7559, while a WSDone approach, with

lch again, gives us best precision on test, obtained so far on MSR - .7942.

Another observation that we can make here is that the optimum thresholds

slightly increased, when compared to the lexical based methods. This is because

111

Table 4.3
W2W Semantic methods on MSR with OpenNLP (P.B.C.U.N.N. method, with
Average-Norm and greedy matching)

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
WSDone - path .5957 .7301 .7730 .8500 .7264 .7698 .8396
WSDone - lch .6111 .7341 .7744 .8554 .7333 .7707 .8527
WSDone - wup .5964 .7343 .7699 .8652 .7293 .7632 .8596
WSDone - res .6055 .7252 .7456 .9005 .7165 .7330 .9024
WSDone - lin .6000 .7323 .7730 .8547 .7281 .7703 .8422
WSDone - jcn .5957 .7306 .7734 .8503 .7264 .7698 .8396
WSDall - path .5957 .7309 .7717 .8543 .7316 .7706 .8492
WSDall - lch .6140 .7392 .7677 .8801 .7438 .7677 .8814
WSDall - wup .6110 .7363 .7630 .8841 .7362 .7559 .8910
WSDall - res .5978 .7336 .7716 .8602 .7339 .7679 .8596
WSDall - lin .5990 .7353 .7678 .8718 .7339 .7658 .8640
WSDall - jcn .5957 .7306 .7709 .8554 .7316 .7706 .8492
LSA .5990 .7309 .7687 .8605 .7304 .7668 .8544

Table 4.4
W2W Semantic methods on MSR with Stanford, (W.B.I.U.N.F. method, with
Max-Norm and greedy matching)

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
WSDone - path .5263 .7321 .7775 .8453 .7351 .7764 .8448
WSDone - lch .5544 .7387 .7963 .8238 .7362 .7942 .8143
WSDone - wup .5245 .7343 .7701 .8649 .7357 .7676 .8640
WSDone - res .5325 .7274 .7465 .9030 .7258 .7393 .9076
WSDone - lin .5244 .7345 .7762 .8529 .7357 .7740 .8509
WSDone - jcn .5263 .7323 .7776 .8456 .7351 .7764 .8448
WSDall - path .5000 .7336 .7510 .9059 .7484 .7563 .9172
WSDall - lch .5507 .7424 .7806 .8605 .7559 .7895 .8631
WSDall - wup .5517 .7392 .7765 .8620 .7490 .7802 .8666
WSDall - res .5309 .7355 .7802 .8471 .7420 .7831 .8466
WSDall - lin .5219 .7368 .7675 .8754 .7449 .7688 .8814
WSDall - jcn .5000 .7350 .7513 .9085 .7472 .7548 .9180
LSA .5238 .7328 .7708 .8602 .7374 .7711 .8605

112

Table 4.5
W2W Semantic methods on ULPC with OpenNLP, (W.W.I.U.N.N. method,
with Average-Norm and greedy matching)

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
WSDall - path .3846 .6451 .6219 .8632 .6232 .6164 .8242
WSDall - lch .3478 .6444 .6106 .9303 .6533 .6208 .9414
WSDall - wup .4224 .6444 .6204 .8682 .6313 .6180 .8535
WSDall - res .3571 .6451 .6166 .8943 .6353 .6176 .8755
WSDall - lin .3828 .6451 .6185 .8831 .6293 .6158 .8571
WSDall - jcn .3750 .6458 .6201 .8769 .6253 .6150 .8425
LSA .3831 .6391 .6175 .8595 .6353 .6220 .8498

when using word semantics the algorithm tends to find more pairs, since we are

also matching words that do not have an exactly identical lexical form in the other

input text.

For the next two datasets, ULPC and RTE, we show results only on the

WSDall approach, since this one seemed to perform better on MSR, than the other

approach. Tables 4.5 and 4.6 present performance results on these other two

datasets, ULPC and RTE respectively, both on the same combination of

preprocessing options (compare only words, in their original form, case

insensitive, and no weighting).

Although on ULPC, by using word semantics, we managed to raise the

performance bar a little, in terms of all three measures of accuracy (.6533 with lch),

precision (.6220 with LSA) and recall (.9414 with lch), we noticed that the RTE

corpus was not so friendly with these metrics. In this case we barely managed to

get a slightly better precision when using the path measure (.6269 when compared

to .6269, from the previous lexical-based methods).

113

Table 4.6
W2W Semantic methods on RTE with Stanford, (W.W.I.U.N.N. method, with
asymmetric normalization, A→ B and greedy matching)

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
WSDall - path .6154 .6018 .5889 .6902 .6313 .6269 .6927
WSDall - lch .6130 .6042 .5757 .8106 .6162 .5938 .7951
WSDall - wup .6667 .5893 .5722 .7277 .6175 .6028 .7439
WSDall - res .6154 .6007 .5854 .7071 .6313 .6226 .7122
WSDall - lin .6105 .5968 .5793 .7251 .6212 .6090 .7293
WSDall - jcn .6154 .6015 .5882 .6934 .6300 .6239 .7000
LSA .6250 .6037 .5896 .6982 .6313 .6226 .7122

4.7. Performance Results on Optimal Methods based on Word Semantics

As previously mentioned in the introductory part of this chapter, by introducing

the concept of words semantics in the problem of textual similarity assessment, it

allows for another type of matching the lexical tokens between two input texts,

and we call this the optimal matching approach. Optimal matching algorithms try

to find optimal solutions of pairing elements from two distinct sets, such that it

maximizes a particular function that depends directly on the similarity scores

between the paired elements. In the introductory section of this chapter we gave

one example where such an optimal matching might prove useful for our

problem, given that an efficient W2W semantic similarity metric is available to us.

One major issue with problems that require finding optimal solutions is time

complexity. For our problem we observe that it closely related to the classic

problem of optimal assignment. The assignment problem is one of the fundamental

combinatorial optimization problems where the task is to find a maximum weight

matching in a weighted bipartite graph. A good definition of this problem can be

found in Wikipedia, where in its most general form, the problem is as follows:

114

The Task Assignment Problem. There are a number of agents and a

number of tasks. Any agent can be assigned to perform any task,

incurring some cost that may vary depending on the agent-task

assignment. It is required to perform all tasks by assigning exactly

one agent to each task in such a way that the total cost of the

assignment is minimized.2

The difference between this and our problem is that the agents are words

from the first sentence, the tasks are words from the second sentence (these can be

interchanged, in the case of symmetric similarity), the cost function is given by

the similarity metric between words, and we are instead looking to find the

maximum total cost, instead of the minimum.

One efficient way to solve the assignment problem in polynomial time is given

by the Hungarian method, which is a combinatorial optimization method,

developed and published by Harold Kuhn in 1955 (Kuhn 2005) and named after

the earlier works of two Hungarian mathematicians, Konig and Egervary. We

used an existing java implementation of the algorithm3 which needs as input a

matrix of computed W2W similarity measures for all the possible combination of

pairs between the two input texts, and outputs a combination of pairing that

provides maximum similarity-based matching. On our experiments, since the

input texts were not too long, computing this matrix didn’t seem very demanding

for our system.

2 Taken verbatim from the Wikipedia page on the Assignment problem - June, 2011

3 Created and made available by Konstantinos A. Nedas from University of
Maine, Orono, ME

115

Table 4.7
W2W Semantic methods on MSR with optimal matching

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
WSDall - path .5469 .7318 .7652 .8700 .7391 .7699 .8666
WSDall - lch .5959 .7289 .7661 .8616 .7304 .7648 .8588
WSDall - wup .5862 .7309 .7475 .9085 .7270 .7421 .9032
WSDall - res .5731 .7301 .7853 .8264 .7299 .7821 .8230
WSDall - lin .5728 .7318 .7756 .8485 .7403 .7816 .8457
WSDall - jcn .5500 .7316 .7706 .8580 .7345 .7710 .8544
LSA .5385 .7257 .7480 .8958 .7310 .7517 .8893

Table 4.8
W2W Semantic methods on ULPC with optimal matching

Performance on Train Performance on Test
Method Threshold Acc. Prec. Recall Acc. Prec. Recall
WSDall - path .3542 .6618 .6272 .9104 .6493 .6276 .8828
WSDall - lch .4459 .6531 .6282 .8657 .6333 .6250 .8242
WSDall - wup .4474 .6518 .6233 .8868 .6353 .6233 .8425
WSDall - res .3720 .6571 .6259 .8968 .6413 .6243 .8645
WSDall - lin .3790 .6598 .6261 .9080 .6373 .6211 .8645
WSDall - jcn .3684 .6624 .6309 .8930 .6513 .6341 .8571
LSA .3620 .6578 .6238 .9117 .6353 .6170 .8791

In the followings, we evaluated the optimal matching approach on the MSR

and ULPC datasets. We used Stanford preprocessing, a Max-Norm option for

normalization and the following combination of preprocessing options

(P.B.I.U.N.F - include punctuation, use base form, and a local weight on the

frequency of tokens). Tables 4.7 and 4.8 report performance scores for the two

datasets respectively.

When comparing these results with the ones based on the greedy matching

approach (Tables 4.4 and 4.5) we see that they do not show that much promise.

116

The only improvement that we see for the testing part of the corpora is on the

ULPC data where, for the jcn metric, we managed to get a precision score of .6341,

the highest obtained so far on this corpus. This partly reinforces our concern that

using current W2W metrics on isolated tokens only, does not exploit the full

potential of the optimal matching approach. Of course these results tell only a

small part of the whole story, since there are plenty of other options to experiment

with; but we will leave these for future work.

4.8. Latent Semantic Analysis

Another different approach to compute text-to-text similarity is by extending

known statistical techniques for representing the meaning of words with vectorial

representations. We mention here two such techniques, both of which are

conceptually very similar. One is called Latent Dirichlet Allocation (LDA, (Blei,

Ng, and Jordan 2003)), which is based on topic analysis, and the other is called

Latent Semantic Analysis (LSA, (Landauer et al. 2007)), which is based on concept

analysis. Although LSA is more commonly used when compared to LDA, one of

the benefits of topic analysis over concept analysis is the ability to better handle

polysemy and synonymy. In this section we’re going to focus on studying LSA,

also known as Latent Semantic Indexing. LSA had been previously described in

section 2.4.2 where it was used for a semantic representation of texts. We leave the

study of LDA for future research.

So far in this chapter we used LSA as one of several ways to measure the

semantic similarity between words, which we employed to found matches of

pairs between two input texts. What we are going to study in this section is how

to extend the vectorial representations on the meaning of all the words in a text

into a single vectorial representation for the whole text. Specifically, we are going

117

to investigate the impact of several local and global weighting schemes on Latent

Semantic Analysis’ ability to capture semantic similarity between two texts. We

worked with texts varying in size from sentences to paragraphs. We present a

comparison of 3 local and 3 global weighting schemes across 3 different

standardized data sets related to semantic similarity tasks. For local weighting,

we used binary weighting, term-frequency, and log-type. For global weighting,

we relied on binary, inverted document frequencies (IDF) collected from the

English Wikipedia, and entropy, which is the standard weighting scheme used by

most LSA-based applications. We studied all possible combinations of these

weighting schemes on the following three tasks and corresponding data sets:

paraphrase identification at sentence level using the MSR corpus (see Section

1.6.1) , paraphrase identification at sentence level using data from the intelligent

tutoring system iSTART (which is encoded in the ULPC corpus - Section 1.6.2),

and mental model detection based on student-articulated paragraphs in

MetaTutor (Azevedo et al. 2008), another intelligent tutoring system. Our

experiments revealed that for sentence-level texts a combination of type

frequency local weighting in combination with either IDF or binary global

weighting works best. For paragraph-level texts, a log-type local weighting in

combination with binary global weighting works best. We also found that global

weights have a greater impact for sentence-level similarity as the local weight is

undermined by the small size of such texts.

4.8.1 Weighting in LSA

LSA represents the meaning of individual words using vector-based

representations. The similarity of two words can be computed as the normalized

dot-product between their corresponding vectors. In Section 2.4.2 we described

118

the general framework to construct these LSA representations from sizable

collections of documents. During this process, several weighting schemes can be

used to improve the output.

As the LSA representation relies on word co-occurrences in the given

collection of documents, various techniques have been used to reduce the role of

highly-frequent words, e.g., the, which do not carry much meaning (Dumais 1991;

Berry, Dumais, and O’Brien 1995; Nakov, Popova, and Mateev 2001). These

techniques combine local weighting, quantifying the importance of words within

the texts, and global weighting, which quantifies the importance of words in a

large corpus, i.e., across many texts. Comparison among several weighting

schemes for deriving the LSA-based representations of individual words have

been done before and the choice of local and global weighting have been shown

to have a significant impact on the overall performance of LSA-based semantic

similarity methods (Landauer et al. 2007). For instance, Dumais (1991) has

experimented with six weighting schemes that were derived from combining 3

local and 4 global schemes (not all combinations were explored). The most

successful combination was based on the log of the local (within a document)

term frequency and the inverse of the entropy of the term in the corpus. Nakov

and colleagues (2001) experimented with 12 combinations of more or less the

same set of local and global weights and found similar results, i.e., a combination

of log and entropy is best. It is important to note that Dumais and Nakov and

colleagues focused on different tasks: information retrieval and text classification,

respectively, which is different than our task on text-to-text similarity assessment,

at sentence and paragraph level.

But a more important distinction from previous work is that we investigate a

different type of weighting for LSA, which becomes apparent when one tries to

119

extend the LSA-based vectorial representation to assess the similarity of texts

beyond word-level. We therefore experiment with weighting schemes to extend

the LSA representation to sentences and paragraphs, after the derivation of the

LSA representation of individual words. To the best of our knowledge, the role of

this type of weighting has not been investigated before. Previous research on local

and global weighting schemes for LSA has focused on weighting before the

derivation of the LSA representation, i.e., during the creation of the

term-by-document frequency matrix which is the input to the LSA procedure to

derive the LSA representation for words. The term-by-document matrix contains

information about which word occurred in which document in a large collection

of documents.

Furthermore, our study has been extensively conducted across various types

of data input to assess the role of local and global weighting schemas for the

problem of textual similarity assessment. It is important to assess the role of

weighting schemes across texts of various sizes as some weights may behave

differently depending on the size of the text. For instance, the local weight of raw

frequency which counts the number of occurrences of a word in the text will be

dominated by the global weight in texts the size of a sentence because in such

texts raw frequency is most of the time 1. This is explained by the fact that words

are not reused in a sentence while in a paragraph they are, e.g., for cohesion

purposes.

4.8.2 LSA-based Similarity of Texts

To compute how similar two words based on LSA vector representations, the

cosine between the vectors must be computed. The cosine is the normalized dot

120

product between the vectors. If we denote V (w) the LSA vector of a word w then

the cosine is given by Equation 4.10.

LSA(w1, w2) =
V (w1) ∗ V (w2)

||V (w1)|| ∗ ||V (w2)||
(4.10)

A cosine value of 0 means there is no semantic similarity between words or

paragraphs while 1 means they are semantically equivalent (synonyms).

The use of LSA to compute similarity of texts beyond word-level relies mainly

on combining the vector representation of individual words. Specifically, the

vector representation of a text containing two or more words is the weighted sum

of the LSA vectors of the individual words. If we denote weightw the weight of a

word as given by some scheme, local or global, then the vector of a text T

(sentence or paragraph) is given by Equation 4.11. In Equation 4.11, w takes value

from the set of unique words in text T , i.e., from the set of word types of T . If a

word type occurs several times in a document that will be captured by the local

weight (loc− weight). Glob− weight in Equation 4.11 represents the global weight

associated with type w, as derived from a large corpus of documents.

V (T) =
∑
w∈T

loc-weightw ∗ glob-weightw ∗ Vw (4.11)

To find out the LSA similarity score between two texts T1 and T2, i.e.,

LSA(T1, T2), we first represent each sentence as vectors in the LSA space, V (T1)

and V (T2), and then compute the cosine between two vectors, in a similar way as

for the word level (see Equation 4.10).

There are several ways to compute local and global weights, of which some

were already detailed in Section 3.4. For local weighting, the common schemes we

looked at are: binary, type frequency and log-type frequency. Binary means 1 if the

121

word type occurs at least once in the document and 0 if it does not occur at all.

Type frequency weight is defined as the number of times a word type appears in a

text, sentence or paragraph in our case. Log-type frequency weight is defined as

log(1 + type frequency). It has been proposed by (Dumais 1991) based on the

observation that type frequency gives too much weight/importance to very

common, i.e., frequent, words. A frequent word such as the which does not carry

much meaning will have a big impact, although its entropy (see Section 3.4) is

low, which is counterintuitive. To diminish ‘the frequency factor for such words,

but not eliminate it entirely, the log-type weighting scheme was proposed.

For global weighting, we looked at: binary weight (similarly to local binary

weight previously described), entropy weight (previously detailed in Section 3.4),

and an IDF-based weight.

Given the need for word distributional information in our global weighting

schemes, i.e., entropy and IDF, it is important to derive as accurate estimates of

word statistics as possible. Accurate word statistics means being representative of

overall word usage (by all people at all times). The accuracy of the estimates is

largely influenced by the collection of texts where the statistics are derived from.

Various collections were used so far to derive word statistics. For instance,

(Corley and Mihalcea 2005) used the British National Corpus as a source for their

IDF values. We chose Wikipedia instead, to derive the IDF index, because it

encompasses texts related to both general knowledge and specialized domains

and it is being edited by many individuals, thus capturing diversity of language

expression across individuals. Furthermore, Wikipedia is one of the largest

publicly available collections of English texts. Extracting IDF values and word

statistics from very large collections of text, such as Wikipedia, is non-trivial task.

122

Section 3.9 gives ample details on our own implementation for extracting these

values.

4.8.3 Prior Knowledge Activation Paragraphs

Before going into experimental part of this study, we must first introduce a new

corpus, the PKA corpus, which we will be experimenting with in this study, along

with the two other corpora that were previously introduced in the introductory

chapter of this dissertation, the MSR (see Section 1.6.1) and the ULPC (see Section

1.6.2) datasets.

This new third corpus is a bit different than the previous two, in the sense that

it contains paragraphs which must be labeled in three classes depending on their

level of similarity to another paragraph of reference. The corpus was created to

help evaluating methods that classify textual inputs given by students in the

Intelligent Tutoring System, MetaTutor (Azevedo et al. 2008), which was briefly

introduced in Section 1.7. At the beginning of their interaction with MetaTutor,

students are given a learning goal, e.g., learn about the human circulatory system,

and encouraged to use a number of self-regulatory processes that will eventually

help with their learning. One of the important self-regulatory processes in

MetaTutor is prior knowledge activation (PKA), which involves students recalling

knowledge about the topic to be learned. During prior knowledge activation,

students must write a paragraph which is assumed to reflect students knowledge

with respect to the learning goal.

The corpus contains 309 paragraphs composed by students during PKA. The

PKA paragraphs given by students are assumed to reflect students knowledge

about the current topic, in other words, the students current mental model. A

proper automatic evaluation of these paragraphs will help an interactive tutoring

123

system to evaluate the student, measure its learning, and give feedback or act

depending on students current level of mental knowledge. The paragraphs in the

corpus are labeled by human experts on three levels of mental models (MM):

High (100 paragraphs), Medium (70 paragraphs) and Low (139 paragraphs). For

this corpus we compare each student paragraph with one ideal paragraph which

is considered as benchmark for a perfect mental model, representing the highest

level of MM. This ideal paragraph was created by a human expert and contains

summarized information about all important concepts encompassed in the

learning topic. An example of a student paragraph and its corresponding ideal

paragraph, was previously given in Table 1.1 of Section 1.7.

4.8.4 Experiments and Results

We have explored all 9 possible combinations among local and global weighting

schemes on three different datasets: Microsoft Paraphrase Corpus (MSR corpus),

iSTART/ULPC, and PKA/MetaTutor. For each dataset, the task was to compute

similarity between two texts and assess how well the LSA based predictions

matched expert judgments. In the MSR and iSTART corpora, texts are the lengths

of a sentence while the PKA data set contains texts the size of paragraphs. Details

about each dataset will be provided in the next subsections.

We calculate LSA-based similarity between pairs of texts using all

combinations of weighting schemes presented earlier and use logistic regression

from WEKA machine learning toolkit (Witten and Frank 2005) to classify

instances based on the LSA score. We report results using five performance

metrics: accuracy, kappa measure, and weighted averages for precision, recall and

f-measure. Accuracy is computed as the percentage of a method’s prediction that

matches the expected predictions suggested by experts. Kappa coefficient

124

measures the level of agreement between predicted categories and

expert-assigned categories while also accounting for chance agreement. Precision

and Recall have been previously defined in first part of Section 3.8 for cases where

there are only two classes to consider. For the PKA dataset, where there are

multiple classes to consider (i.e., low, medium and high MMs), precision and

recall are computed as averages per class. F-measure is calculated as the harmonic

mean of precision and recall. Results were obtained using 10-fold cross-validation,

except for MSR dataset for which we used the explicit test subset.

Similar as before, we used an LSA space from the TASA corpus. The corpus

contains a distribution of texts from all genres (e.g., science, language arts, health,

economics, social studies, business, and others) and has been successfully used as

to derive LSA spaces by others (Graesser et al. 2007). For a good approximation

on the meaning of words, it is usually recommended the LSA space to have

between 100 and 500 dimensions (Landauer et al. 2007), which are viewed as

relevant abstract or latent concepts to which a given word is more or less related

to. In our case here, the LSA space has 326 dimensions.

We present three tables; each table corresponds to one dataset. Lines are

specific to global weighting schemes, and on columns are listed each of the five

evaluation measures grouped by local weighting schemes. We list all possible

combinations of three global weighting schemes (binary weighting, entropy

weighting, and IDF weighting) with three local weighting schemes (binary

weighting, type frequency weighting, and log-type frequency weighting).

Table 4.9 presents results on the MSR corpus, Table 4.10 reports results on the

ULPC corpus, while Table 4.11 shows results on the PKA corpus.

To synthesize these results, the next Table 4.12 presents combinations of local

and global weighting schemes on which best results were reported, in terms of

125

Table 4.9
LSA results on the MSR dataset.

binary (local) type freq. (local) log-type freq. (local)
(global) Acc Prec Rec. Acc Prec Rec. Acc Prec Rec.

binary 70.38 .686 .704 70.55 .689 .706 70.20 .684 .702
entropy 69.16 .669 .692 68.98 .667 .690 69.22 .670 .692

idf 69.85 .679 .699 69.74 .667 .697 69.85 .679 .699

Table 4.10
LSA results on the iSTART/ULPC dataset.

binary (local) type freq. (local) log-type freq. (local)
(global) Acc Prec Rec. Acc Prec Rec. Acc Prec Rec.

binary 61.21 .618 .612 61.11 .616 .611 61.66 .624 .617
entropy 62.61 .630 .630 62.61 .631 .626 62.66 .632 .627

idf 63.21 .638 .632 63.21 .639 .632 63.16 .638 .632

Table 4.11
LSA results on the MetaTutor/PKA dataset

binary (local) type freq. (local) log-type freq. (local)
(global) Acc Prec Rec. Acc Prec Rec. Acc Prec Rec.

binary 60.84 .472 .608 58.58 .456 .586 61.16 .473 .612
entropy 58.25 .450 .583 58.25 .451 .583 59.55 .461 .595

idf 60.19 .465 .602 59.87 .463 .599 59.55 .461 .595

126

Table 4.12
Weighting scheme combinations corresponding to best results for each dataset.

ULPC MSR PKA
global×local idf×type bin×type bin×log-type

accuracy 63.21 70.55 61.16
kappa .239 .244 .354
precision .639 .689 .473
recall .632 .706 .612
f-measure .616 .672 .534

accuracy, for each dataset. For sentence-level texts a combination of type

frequency local weighting in combination with either IDF or binary global

weighting works best. For paragraph-level texts, a log-type local weighting in

combination with binary global weighting works best. From the table, we can see

that there is no clear winner of global and local weight combination across tasks

and text sizes. That may be a result of different distribution of positive and

negative examples in the three data sets and that on MSR we used a training-test

form of evaluation while for the other we used 10-fold cross-validation.

We also conducted a repeated measures analysis of variance with the local

weighting as a repeated measurement. The differences among the various local

weightings were significantly different at p<0.05 with the exception of raw and

binary local weighting for sentence-level texts. This could be explained by the fact

that for such texts the raw frequency and the binary value for binary weighting

coincides simply because words tend to occur only once in a sentence. That is,

words are less likely to be re-used in a sentence as opposed to a paragraph.

These experiments on LSA revealed that for sentence-level texts a

combination of binary local weighting in combination with either IDF or binary

global weighting works best. For paragraph-level texts, a log-type local weighting

127

in combination with binary global weighting works best. We also found that

global weights have a greater impact for sentence-level similarity as the local

weight is undermined by the small size of such texts. Furthermore, we conclude

from these experiments that there is no clear winning combination of global and

local weighting across tasks and text size, which is somehow different from

earlier conclusions for different types of weighting in LSA, at word-level

representations, that entropy and log-type is the best combination. An idea for

future research on this particular topic, would be to further explore the role of

local and global weighting in more controlled experiments in which the same

distributions of positive and negative examples is used, and same evaluation

methodology, 10-fold cross-validation, across all data sets and text sizes.

128

CHAPTER 5

SYNTACTIC DEPENDENCY RELATIONS

In this chapter we go beyond simple word based matching, for the task of

semantic similarity assessment, and study the syntactic relationship between

words while looking for similarities and differences between two texts. We focus

this chapter on an earlier study that we did on the MSR corpus to use dependency

relations to measure semantic similarity between texts, at sentence level. This was

a novel, fully automated approach to the task of paraphrase identification. The

proposed approach quantifies both the similarity and dissimilarity between two

sentences, mainly based on syntactic dependency relations between words. The

basic idea is that two sentences are in a paraphrase relation if they have many

similarities (at lexico-semantic and syntactic levels) and few or no dissimilarities.

For instance, the two sentences in the MSR example shown in the beginning of

previous chapter (Chapter 4) have many similarities, e.g., common words such as

York and common syntactic relations such as the subject relationship between York

and have, and only a few dissimilarities, e.g., Text A contains the word saying

while Text B contains the word insisting. Thus, we can confidently deem the two

sentences as being paraphrases of each other. Following this basic idea, to identify

paraphrases we first compute two scores: one reflecting the similarity and the

other the dissimilarity between the two sentences. A paraphrase score is

generated by taking the ratio of the similarity and dissimilarity scores. If the ratio

is above a certain threshold, the two sentences are judged as being paraphrases of

each other. Similar to previous methods, we find the best separating threshold, by

optimizing the performance of the proposed approach on training data. One

129

important difference in this current approach is that the paraphrase score is not a

normalized value, and so the threshold value is not bounded between the values

of 0 and 1.

5.1. Distinctions from Previous Work

There are several key features of this approach that distinguish it from other

approaches (see future Section 7.1) on measuring semantic similarity between

texts, particularly for the task of paraphrase identification. First, it considers both

similarities and dissimilarities between sentences. This is an advantage over

approaches that only consider the degree of similarity (Rus et al. 2008a) because

the dissimilarity of two sentences can be very important to identifying

paraphrasing, as shown by the work of (Qiu, Kan, and Chua 2006), which is

detailed later, in Section 7.1 of this dissertation.

Second, the similarity between sentences is computed using word-to-word

similarity metrics instead of simple word matching or synonymy information in a

thesaurus as in (Qiu, Kan, and Chua 2006; Rus et al. 2008a). The word-to-word

similarity metrics can identify semantically related words even if the words are

not identical or synonyms. We use the similarity metrics from the WordNet

similarity package (Pedersen, Patwardhan, and Michelizzi 2004) that we’ve

detailed in previous chapter, section 4. Similarly, Corley and Mihalcea (2005),

used the WordNet similarity package to obtain semantic similarity between

individual words. Our approach has the advantage that it also considers syntactic

information, in addition to word semantics, to identify paraphrases.

Third, we weight dependencies to compute dissimilarities between sentences

as opposed to simple dependency overlap methods that do no weighting

(Lintean, Rus, and Graesser 2008; Rus et al. 2008a). Using dependencies provides

130

an advantage over approaches that use phrase-based parsing (Rus et al. 2008a),

since the latter limits the applicability of the approach to free-order languages, for

which dependency parsing is more suitable. The weighting allows us to make

fine distinctions between sentences with a high similarity score that are

paraphrases and those that are not due to the strength of the few dissimilarities.

For instance, two sentences that are almost identical except their subject relations

are likely to be non-paraphrases as opposed to two highly similar sentences that

differ in terms of, say, determiner relations. We weight dependencies using two

features: (1) the type/label of the dependency, and (2) the depth of a dependency

in the dependency tree. To extract dependency information, two parsers were

used, Minipar (Lin 1993) and the Stanford parser (de Marneffe, MacCartney, and

Manning 1993). We report results with each of the parsers later in the chapter.

A final feature that makes this approach particularly interesting from other

approaches is that it is minimally-supervised. For example Zhang and Patrick

(2005) used decision trees to classify the sentence pairs making their approach a

supervised one. In one particular case we only need to derive the value of the

threshold from training data for which it is only necessary to know the

distribution of true-false paraphrases in the training corpus and not the

individual judgment for every instance in the corpus. Also, Zhang and Patrick’s

approach relies only on lexical and syntactic features while we also use semantic

similarity factors.

5.2. Approach

As mentioned before, our approach is based on the observation that two sentences

express the same meaning, i.e., are paraphrases, if they have all or many words

and syntactic relations in common. Furthermore, the two sentences should have

131

few or no dissimilar words or syntactic relations. In the example below, we show

two sentences with high lexical and syntactic overlap. The different information,

legal rights in the first sentence and powers in the second sentence, does not have a

significant impact on the overall decision that the two sentences are paraphrases,

which can be drawn based on the high degree of lexical and syntactic overlap.

Text A: The decision was within its legal rights.

Text B: The decision was within its powers.

On the other hand, there are sentences that are almost identical, lexically and

syntactically, and yet they are not paraphrases because the few dissimilarities

make a big difference. In the example below, there is a relatively “small”

difference between the two sentences. Only the subject of the sentences is

different. However, due to the importance of the subject relation to the meaning of

any sentence the high similarity between the sentences is sufficiently dominated

by the ”small” dissimilarity to make the two sentences non-paraphrases.

Text A: CBS is the leader in the 18 to 46 age group.

Text B: NBC is the leader in the 18 to 46 age group.

Thus, it is important to assess both similarities and dissimilarities between

two sentences S1 and S2 before making a decision with respect to them being

paraphrases or not. In our approach, we capture the two aspects, similarity or

dissimilarity, and then find the dominant aspect by computing a final paraphrase

score as the ratio of the similarity and dissimilarity scores:

Paraphrase(S1, S2) = Sim(S1, S2)/Diss(S1, S2)

132

The decision had been within its legal rights. The decision was within its powers.

be be

decision decisionhave right power

its itslegal

nsubj nsubjaux
prep-within prep-within

poss
det det poss

the the

amod

Paired Dependencies:
det(decision, the) = det(decision, the)
nsubj(be, decision) = nsubj(be, decision)
poss(power, its) = poss(right, its)
prep_within(be, power) = prep_within(be, right)

Unpaired Dependencies/Sentence 1:

Unpaired Dependencies/Sentence 2:

aux(be, had)
amod(right-n, legal-a)

EMPTY

Figure 5.1
Example of dependency trees and sets of paired and non-paired dependencies.

If the paraphrase score is above a learned threshold T the sentences are deemed

paraphrases. Otherwise, they are non-paraphrases.

The similarity and dissimilarity scores are computed based on dependency

relations (Hays 1964), which are asymmetric relationships between two words in

a sentence, a head and a modifier. A sentence can be represented by a set of

dependency relations (see the bottom half of Figure 5.1). An example of

dependency is the subject relation between John and drives in the sentence John

drives a car. Such a dependency can be viewed as the triple subj(John, drive). In the

triplets the words are lemmatized, i.e., all morphological variations of a word are

mapped onto its base form. For instance, go, went, gone, going are all mapped onto

go.

The Sim(S1, S2) and Diss(S1,S2) scores are computed in three phases: (1) map

the input sentences into sets of dependencies, (2) detect common and

non-common dependencies between the sentences, and (3) compute the Sim(S1,

S2) and Diss(S1,S2) scores. Figure 5.2 depicts the general architecture of the system

in which the three processing phases are shown as the three major modules.

133

In the first phase, the set of dependencies for the two sentences is extracted

using a dependency parser. We use both Minipar (Lin 1993) and the Stanford

parser (de Marneffe, MacCartney, and Manning 1993) to parse the sentences.

Because these parsers do not produce perfect output the reader should regard our

results as a lower bound, i.e., results in the presence of parsing errors. Should the

parsing been perfect, we expect our results to look better. The parser takes as

input the raw sentence and returns as output a dependency tree (Minipar) or a list

of dependencies (Stanford). In a dependency tree, every word in the sentence is a

modifier of exactly one word, its head, except the head word of the sentence,

which does not have a head. The head word of the sentence is the root node in the

dependency tree. Given a dependency tree, the list of dependencies can be easily

derived by traversing the tree and for each internal node, which is head of at least

one dependency, we retrieve triplets of the form rel(head, modifier) where rel

represents the type of dependency that links the node, i.e., the head, to one of its

children, the modifier. Figure 1 shows the set of dependencies in the form of

triplets for the dependency trees in the top half of the figure.

In this phase, we also gather positional information about each dependency in

the dependency tree as we will need this information later when weighting

dependencies in Phase 3. The position/depth of a dependency within the

dependency tree is calculated as the distance from the root of the node

corresponding to the head word of the dependency. Because the Stanford parser

does not provide the position of the dependencies within the tree, we had to

recursively reconstruct the tree based on the given set of dependency relations

and calculate the relative position of each relation from the root.

The second phase in our approach identifies the common and non-common

dependencies of the sentences, based on word semantics and syntactic

134

Set of
dependencies
from sentence 1

Sentence
2

Sentence
1

Set of
dependencies
from sentence 2

Phase 1: Extract dependencies Phase 2: Pair dependencies Phase 3: Calculate the scores

Set of
paired/common
dependencies

Set of unpaired
dependencies from
sentence 1

Set of unpaired
dependencies from
sentence 2

Similarity Score (S)

Dissimilarity Score (D)

S / D > Threshold ?

Figure 5.2
Architecture of the system.

information. Three sets of dependencies are generated in this phase: one set of

paired/common dependencies and two sets of unpaired dependencies, one

corresponding to each of the two sentences. To generate the paired and unpaired

sets a two-step procedure is used. In the first step, we take one dependency from

the shorter sentence in terms of number of dependencies (a computational

efficiency trick) and identify dependencies of the same type in the other sentence.

In the second step, we compute a dependency similarity score (d2dSim) using the

word-to-word similarity metrics applied to the two heads and two modifiers of

the matched dependencies. Heads and modifiers are mapped onto all the

corresponding concepts in WordNet, one concept for each sense of the heads and

modifiers. The similarity is computed among all senses/concepts of the two

heads and modifiers, respectively, and then the maximum similarity is retained. If

a word is not present in WordNet exact matching is used. The word-to-word

similarity scores are combined into one final dependency-to-dependency

similarity score by taking the weighted average of the similarities of the heads

and modifiers. Intuitively, more weight should be given to the similarity score of

heads and less to the similarity score of modifiers because heads are the more

135

important words. Surprisingly, while trying to learn a good weighting scheme

from the training data we found that the opposite should be applied: more weight

should be given to modifiers (0.55) and less to heads (0.45). We believe this is true

only for the MSR Paraphrase Corpus and this weighting scheme should not be

generalized to other paraphrase corpora. The MSR corpus was built in such a way

that favored highly similar sentences in terms of major content words (common

or proper nouns) because the extraction of the sentences was based on keyword

searching of major events from the web. With the major content words similar, the

modifiers are the heavy lifters when it comes to distinguishing between

paraphrase and non-paraphrase cases. Another possible approach to calculate the

similarity score between dependencies is to rely only on the similarity of the most

dissimilar items, either heads or modifiers. We also tried this alternative

approach, but it gave us slightly poorer results (around 2% decrease in

performance), and therefore, using a weighted scheme to calculate the similarity

score for dependencies proved to be a better choice. The

dependency-to-dependency similarity score needs to exceed a certain threshold

for two matched dependencies to be deemed similar. Empirically, we found out

from training data that a good value for this threshold would be 0.5. Once a pair

of dependencies is deemed similar, we place it into the paired dependencies set,

along with the calculated dependency-to-dependency similarity value. All the

dependencies that could not be paired are moved into the unpaired dependencies

sets.

sim(S1, S2) =
∑

d1∈S1

maxd2∈S∗
2
[d2dSim(d1, d2)]

136

diss(S1, S2) =
∑

d1∈unpS1

weight(d1) +
∑

d2∈unpS2

weight(d2)

In the third and final phase of our approach, two scores are calculated from

the three dependency sets obtained in Phase 2: a cumulative similarity score and a

cumulative dissimilarity score. The cumulative similarity score Sim(S1, S2) is

computed from the set of paired dependencies by summing up the

dependency-to-dependency similarity scores (S∗
2 in the equation for similarity

score represents the set of remaining unpaired dependencies in the second

sentence). Similarly, the dissimilarity score Diss(S1, S2) is calculated from the two

sets of unpaired dependencies. Each unpaired dependency is weighted based on

two features: the depth of the dependency within the dependency tree and type

of dependency. The depth is important because an unpaired dependency that is

closer to the root of the dependency tree, e.g., the main verb/predicate of

sentence, is more important to indicate a big difference between two sentences. In

our approach, each unpaired dependency is initially given a perfect weight of

1.00, which is then gradually penalized with a constant value (0.20 for the

Minipar output and 0.18 for the Stanford output), the farther away it is from the

root node. The penalty values were derived empirically from training data. Our

tests show that this particular feature works well only when applied to the sets of

unpaired dependencies. The second feature that we use to weight dependencies is

the type of dependency. For example a subj dependency, which is the relation

between the verb and its subject, is more important to decide paraphrasing than a

det dependency, which is the relation between a noun and its determiner. Each

dependency type is assigned an importance level between 0 (no importance) and

137

1 (maximum importance). The importance level for each dependency type has

been established by the authors based on their linguistic knowledge and an

analysis of the role of various dependency types in a subset of sentences from the

training data.

Before comparing the similarity and dissimilarity scores, we consider one

more feature that will affect the dissimilarity score. This improvement, of a more

statistical nature, is based on the idea that if one sentence contains a significant

amount of extra information compared to the other sentence although they do

refer to the same action or event, then the relation between the two sentences is

not a bidirectional relation of paraphrase, but rather a unidirectional relation of

entailment, so they should be evaluated as non-paraphrases. This extra

information is recorded in our dependency sets by the fact that the set of

unpaired dependencies from the longer, more detailed sentence is larger than the

set of unpaired dependencies from the shorter sentence. To account for this

statistical feature, we add an absolute value to the dissimilarity score, which was

empirically chosen to be 14, for every case when the set of unpaired dependencies

from the longer sentence has more than 6 extra dependencies compared to the set

of unpaired dependencies from the shorter sentence. We chose these optimal

constants values to tweak this feature, based on a series of tests made on the MSR

Paraphrase Corpus, and because of that, by including it into the system, the

performance was improved significantly.

Once the Sim(S1, S2) and Diss(S1, S2) scores are available, the paraphrase

score is calculated by taking the ratio between the similarity score, S, and the

dissimilarity score, D, and compare it to the optimum threshold T learned from

training data. Formally, if S/D > T then the instance is classified as paraphrase,

otherwise is a non-paraphrase. To avoid division by zero for cases in which the

138

two sentences are identical (D = 0) the actual implementation tests for S > T ∗D.

To find the optimum threshold, we did an exhaustive search on the training data

set, looking for the value which led to optimum accuracy. This is similar to the

sigmoid function of the simple voted perceptron learning algorithm used in

(Corley and Mihalcea 2005).

5.3. Summary of Results

We experimented with our approach on the MSR Paraphrase Corpus (Dolan,

Quirk, and Brockett 2004), which was previously introduced in Section 1.6.1. To

review, the MSR Paraphrase Corpus is the largest publicly available annotated

paraphrase corpus which has been used in most of the recent studies that

addressed the problem of paraphrase identification. The corpus consists of 5801

sentence pairs collected from newswire articles, 3900 of which were labeled as

paraphrases by human annotators. The whole set is divided into a training subset

(4076 sentences of which 2753 are true paraphrases) which we have used to

determine the optimum threshold T , and a test subset (1725 pairs of which 1147

are true paraphrases) that is used to report the performance results. We report

results using four performance metrics: accuracy (percentage of instances

correctly predicted out of all instances), precision (percentage of predicted

paraphrases that are indeed paraphrases), recall (percentage of true paraphrases

that were predicted as such), and f-measure (harmonic mean of precision and

recall).

In Table 5.1 three baselines are reported: a uniform baseline in which the

majority class (paraphrase) in the training data is always chosen, a random

baseline taken from (Corley and Mihalcea 2005), and a lexical baseline taken from

(Zhang and Patrick 2005) which uses a supervised learning decision tree classifier

139

Table 5.1
Performance and comparison of different approaches on the MSR Paraphrase
Corpus.

System Acc. Prec. Recall F-score
Uniform baseline 0.6649 0.6649 1.0000 0.7987
Random baseline (Corley&Mihalcea’05) 0.5130 0.6830 0.5000 0.5780
Lexical baseline (Zhang&Patrick’05) 0.7230 0.7880 0.7980 0.7930
Corley and Mihalcea (2005) 0.7150 0.7230 0.9250 0.8120
Qiu (2006) 0.7200 0.7250 0.9340 0.8160
Rus (2008a) - average 0.7061 0.7207 0.9111 0.8048
Simple dep. overlap (Minipar) 0.6939 0.7109 0.9093 0.7979
Simple dep. overlap (Stanford) 0.6823 0.7064 0.8936 0.7890
Optimum results (Minipar) 0.7206 0.7404 0.8928 0.8095
Optimum results (Stanford) 0.7101 0.7270 0.9032 0.8056
No word semantics (Minipar) 0.7038 0.7184 0.9119 0.8037
No word semantics (Stanford) 0.7032 0.7237 0.8954 0.8005
No dependency weighting (Minipar) 0.7177 0.7378 0.8928 0.8079
No dependency weighting (Stanford) 0.7067 0.7265 0.8963 0.8025
No penalty for extra info (Minipar) 0.7067 0.7275 0.8936 0.8020
No penalty for extra info (Stanford) 0.7032 0.7138 0.9241 0.8055

with various lexical-matching features. We next show the results of others

including results obtained using the simple dependency overlap method in

(Lintean, Rus, and Graesser 2008). The simple dependency overlap method

computes the number of common dependency relations between the two

sentences divided by the average number of relations in the two sentences. Our

results are then presented in the following order: our best/state-of-the-art system,

that uses all three features described in the previous section: word semantics,

weighted dependencies and penalties for extra information, then a version of the

proposed approach without word semantics (similarity in this case is 1 if words

are identical, case insensitive, or 0 otherwise), then one without weighted

140

dependencies, and finally, one version where the instances with extra information

found in one of their sentences are not penalized.

The conclusion based on our best approach is that a mix of word semantics

and weighted dependencies leads to better accuracy and in particular better

precision. The best approach leads to significantly better results than the naive

baselines and the simple dependency overlap (p<0.001 for the version with

Minipar). The comparison between our best results and the results reported by

(Corley and Mihalcea 2005) and (Lintean, Rus, and Graesser 2008) is of particular

importance. These comparisons indicate that weighted dependencies and word

semantics leads to better accuracy and precision than using only word semantics

(Corley and Mihalcea 2005) or only simple dependency overlap (Lintean, Rus,

and Graesser 2008).

All results in Table 5.1 were obtained with the lin measure from the WordNet

similarity package, except the case that did not use WordNet similarity measures

at all – the No word semantics row. This lin measure consistently led to the best

performance in our experiments when compared to all the other measures offered

by the WordNet similarity package.

For reference, we report in Table 5.2 results obtained when various

word-to-word similarity metrics are used with an optimum threshold calculated

from the test data set. For lin measure we report results with optimum test

thresholds when using both parsers, Minipar and Stanford, while for the rest of

the measures we only report results when using Minipar. We deem these results

as one type of benchmark results for approaches that rely on WordNet similarity

measures and dependencies as they were obtained by optimizing the approach on

the testing data. As we can see from the table, the results are not much higher

than the results in Table 5.1 where the threshold was derived from training data.

141

Table 5.2
Accuracy results for different WordNet metrics with optimum test threshold
values

Metric Acc. Prec. Rec. F
LinMinipar .7241 .7395 .9032 .8132
LinStanford .7130 .7387 .8797 .8030
Path .7183 .7332 .9058 .8105
L & C .7165 .7253 .9233 .8124
W & P .7188 .7270 .9241 .8138
J & C .7217 .7425 .8901 .8097
Lesk .7148 .7446 .8692 .8021
Vector .7200 .7330 .9093 .8117
Vector pairs .7188 .7519 .8614 .8029

One important advantage that our system has over other approaches (Zhang

and Patrick 2005; Qiu, Kan, and Chua 2006) is that it does not rely too much on

the training. The training data is used merely to tune the parameters, rather than

for training a whole classifier. Since the only parameter whose value fully

depends on the training data is the final threshold value, we’ve made another set

of experiments where the threshold value depends only on one piece of

information about the characteristic of the test data set: the percentage of

paraphrase instances within the data set. In other words, when calculating the

threshold value, the system needs only know only what the probability of finding

a paraphrase is within the given data set. The system then tries to find a threshold

value that splits the instances into two sets with the same distribution of instances

as the given data set. For the testing part of the MSR Paraphrase data corpus the

distribution value is 0.6649. We used this information to decide on a threshold

and the results were no more than 2.09% below the optimum performance scores

(for example on Minipar output and when excluding the WordNet similarity

142

feature, the accuracy performance was only 0.06 percent less than when the

threshold is calculated from the training data).

5.4. Using IDF-based weighting on Dependency Relations

Another idea to improve the performance of our method was already suggested

in section 3.9. The idea is to use the specificity of words (e.g., IDF) and weight

them when calculating the similarity and dissimilarity scores. As already

mentioned in previous chapter, we rely on the assumption that when a word is

considered highly specific it should play an important role when deciding for

how semantically similar two texts are. To further motivate this assumption, we

show below a pair of sentences extracted from the MSR test data (instance #89),

where by using IDF, our method successfully classify an otherwise failed instance:

Text A: Emily Church is London bureau chief of CBS.MarketWatch.com.

Text B: Russ Britt is the Los Angeles Bureau Chief for

CBS.MarketWatch.com.

Notice that even though the predicates are the same and there is a rather long

common noun phrase, which results in a significant number of identical

dependencies between the two sentences, the subjects and the locations are

completely different. Because there are two different pairs of names with high IDF

values, this will put a significant weight on the dissimilarity score, which in the

end will affect the decision that the two sentences are in fact not paraphrases.

We use the IDF values calculated from Wikipedia. The process for extracting

these values is explained in detail earlier, in Section 3.9. We apply IDF-based

weights on the paired dependencies when calculating the similarity scores, and

similarly, IDF-based weights on the unpaired dependencies when calculating the

143

Table 5.3
Performance scores when using IDF values from Wikipedia.

Method Parser Optimum train threshold Optimum test threshold
Acc. Prec. Recall Acc. Prec. Recall

Sim&Diss Minipar 0.6922 0.7133 0.8980 0.6957 0.7418 0.8317
Stanford 0.7049 0.7228 0.9024 0.7101 0.7289 0.8980

Diss only Minipar 0.7049 0.7450 0.8457 0.7113 0.7246 0.9128
Stanford 0.7043 0.7323 0.8753 0.7072 0.7242 0.9041

dissimilarity scores. The weights for paired and unpaired dependencies,

respectively, are calculated according with the following formulas:

Widf (d(w1,w2), d(w3,w4)) = [
4∑

i=1

idf(wi)]/(4 ∗ 6)

Widf (d(head,mod)) = [idf(head) + idf(mod)]/(2 ∗ 6)

We experimented two approaches for using the IDF weights: 1) apply IDF

weights to both paired and unpaired dependencies 2) apply IDF weights only to

unpaired dependencies.

Table 5.3 shows results on these two methods when used with both

dependency parsers (Minipar and Stanford). We show the same performance

scores as in the previous section on optimum thresholds derived from both the

training and the testing data sets. An interesting observation when looking at

these results is that the first IDF method works better when used on the Minipar

parser, while the second method works better on the Stanford parser. Another

observation when comparing these results with Table 5.1 is that for the second

IDF method, the precision values seem to increase, at the expense of lower recall.

144

5.5. Discussions

In addition to the previously raised issues, discussed in Section 1.6.1, regarding

the annotation of the MSR corpus, another item worth discussing here is on the

comparison of the dependency parsers. Our experimental results show that

Minipar consistently outperforms Stanford, in terms of accuracy of our

paraphrase identification approach. Minipar is also faster than Stanford1, which

first generates the phrase-based syntactic tree for a sentence and then extracts the

corresponding sets of dependencies from the phrase-based syntactic tree. For

instance, Minipar can parse 1725 pairs of sentences, i.e., 3450 sentences, in 48

seconds while Stanford parser takes 1926 seconds, i.e., 32 minutes and 6 seconds.

5.6. Importance of WordNet Similarity for Dependency Relations

Following from previous chapter we further motivate in here how WordNet

similarity measures are useful when deciding on the presence of paraphrase

relations.

Text A: They say second-quarter earnings reports will be key in giving

investors that guidance.

Text B: The upcoming second-quarter earnings season will be particularly

important in offering investors guidance, they say.

In the above example (instance number 103 from the testing part of the MSR

corpus), there are several dependencies that are paired with the help of the

WordNet similarity metrics. The similarity of words key and important or offering

and guidance is decided using WordNet similarity metrics and thus the

1 This was also mentioned before, in Section 2.6.

145

corresponding dependencies in which these words are involved are correctly

paired, leading to more accurate overlap scores for the two sentences.

146

CHAPTER 6

KERNEL-BASED METHODS

The final set of methods, which are proposed in this dissertation for the task of

semantic similarity assessment, are called kernel-based methods, because they rely

on various predefined kernel functions, used in conjunction with support vector

machine (SVM) classifiers, to qualitatively assess semantic relations between

texts. One main difference between the methods presented in this chapter and

those studied in previous chapters is that kernel-based methods rely on

supervised based learning that takes full advantage of any lexical, semantic or

syntactic features which may be seen in the training set and found to be relevant

to the task of semantic similarity assessment. In our previous methods, the

classification component relied only on the computed semantic similarity scores

to learn threshold values, which classify the data instances in two groups,

depending on whether a relation of semantic similarity is found or not.

We start this chapter by introducing the SVM classifiers and text-based

kernels. Then we study some simple kernels based on the lexical similarities and

differences between two input texts. In a sense, we will be extending some of the

metrics presented in chapter 3. Then we will take a look at some more complex

kernels based on dependency relations that we previously studied in chapter 5.

Specifically we shall compare the trees of dependencies characterizing the input

texts.

In this chapter we focus on text-to-text symmetric similarities only.

Preliminary experiments have shown us that using these kernels-based methods

on asymmetric relations, such as entailment, do not work well, even when we

147

make them account for the difference in role between the source (i.e., the entailed

text) and the target (i.e., the entailed hypothesis). Most of the evaluation work

presented in this chapter was done on the Microsoft Research Paraphrase Corpus

(see Section 1.6.1). We will also show some partial results made on ULPC, the

other dataset on symmetric similarity relations that we introduced in the first

chapter of this dissertation (see Section 1.6.2).

The following section presents the theory behind Support Vector Machines

learning and further motivates why are kernel methods so popular in solving

problems dealing with classification of natural language based inputs, especially

on the topic of document classification. For even more details on SVM learning,

we refer to the book of Vapnik on Statistical Learning Theory (Vapnik 1998) for a

thoroughly description and mathematical analysis of SVMs, or the Burges’

tutorial on SVMs (Burges 1998) for a quicker understanding of the SVM learning

theory. The works of Zanzotto, Pannacchiotti, and Moschitti (2009) and Moschitti

(2009) can also be consulted for further discussions on kernels used in paraphrase

and textual entailment recognition tasks.

6.1. Support Vector Machines

Support Vector Machines (Cristianini and Shawe-Taylor 2000, SVMs) are one class

of supervised, function-based machine learning methods that can be used for

classification and regression tasks. In the simple case of binary classification, the

intuition behind SVM learning is to project the training data into a

multidimensional space, where there exist a hyperplane that can optimally divide

the data points into two groups, each specific to one of the two classes, into which

the data needs to be classified. SVM classifiers aim at finding a hyperplane that

simultaneously minimizes the empirical classification error and maximizes the

148

X

X

X

X

X

X

X

X

X

X

X

H

X

Y

v1

v4

v2

v3

Figure 6.1
Two-class separation hyperplane in a bidimensional space

geometric margin between the hyperplane and the nearest data points.

Maximum-margin hyperplanes lead in general to smaller generalization errors, a

desirable outcome. Support vectors are data points which affect how the

hyperplanes are chosen. In the fortunate case, when the data is linearly separable

(see Figure 6.1 for data separation in a bidimensional space) the hyperplane is

chosen in such a way that the support vectors (i.e., v1, v2, v3, v4) are equally

distanced from the plane on either side. This type of classification, through the

use of separable hyperplanes, gives one very useful feature to the SVMs, and that

is the ability to handle outliers really well, since outliers represent data points

which are located far away from the separation hyper plane, hence they will not

count as support vectors that decide how the hyperplane is calculated.

One simple way to project our data into a multi-dimensional space is to

assume one dimension for each numeric feature characterizing the data instances.

If there are 10 such features, then there will be 10 dimensions for the projected

space, which is called the feature space. To search for a separating hyperplane in

the feature space, the SVM classifier employs the use of a linear kernel function,

149

computed between any two data points, which essentially reflects how close two

instance points are in that space. The linear kernel is defined as the inner product

between the vectors representing the data points - Klinear(x, y) = (x· y). In most

machine learning problems however, the data is not linearly separable in the

future space. In such cases, the data has to be projected into a new

multi-dimensional space where, hopefully, it will be linearly separable. As is

turns out in SVM learning, knowing the relative distance between the data points

(i.e., the output of the kernel function) is enough to define the space and find the

separating hyperplane which is being represented by its support vector points.

Therefore, SVMs do not require any form of representing the data instances in this

multidimensional space where the learning occurs. Furthermore, changing this

space can be done by simply employing a different kernel function as it is

described in the following subsection.

6.1.1 Kernel Functions for SVMs

To move from linear separation to non-linear separation, various kernel functions

can be defined to project the initial feature space into a projected space, which is

usually comprised of a higher number of dimensions, where a linear separation

can be found. Some classic examples of such kernels are: the polynomial kernel -

Kpoly(x, y) = (x· y + coef)d, radial basis function - Krad(x, y) = exp(−γ||x− y||)2, or

two layer sigmoid function - Ksig(x, y) = tanh(γxy + coef) (which makes the SVM

similar to a perceptron classifier). A kernel function can help solve classification

problems that might require complex separation hyperplanes. That is, it can map

problems for which a polynomial or more complex separation hyperplane may be

needed into linear classification problem. This is possible because kernel

functions map the input space into a new, highly-dimensional feature space,

150

where linear separation may be possible. The hardest part is finding a good

kernel that is also valid for SVM learning.

A valid kernel function K(x, y) has to respect Mercer’s conditions, which sais

that for all square integrable functions g(x), the following inequality holds:

∫ ∫
K(x, y)g(x)g(y)dxdy ≥ 0 (6.1)

A particular case of the above condition stipulates that a kernel function that

is symmetric continuous and non-negative definite, respects Mercer’s theorem.

That is, the following inequality is true for all finite sequences of points x1, ..., Xn,

and all choices of real numbers c1, ..., cn:

n∑
i=1

sumn
j=1K(xi, xj)cicj ≥ 0 (6.2)

It can be easily proven mathematically that functions, which are directly

derived from the inner product of vectors in an Euclidian space (or Hilbert space,

to be more general), are in fact non-negative definite (or positive semidefinite). As

we shall see, most kernels that are being proposed in this work, can be easily

associated to inner products in some predefined multi-dimensional space. As

Lodhi pointed out (Lodhi et al. 2002), for these kernels there is no need to further

prove that they satisfy Mercer’s conditions (i.e., they are symmetric and

non-negative defined), since they follow automatically from the definition of the

inner product.

An intuitive way to understand how these nonlinear kernels work is by

considering the simple case of binary classification of data points on a surface. Let

us consider any 3 points, distinctly located on this surface, that are not collinear

(i.e., they are not located on the same line). Then, any labeling of these three

151

points can be correctly separated by a line (which is actually a hyperplane in the

bidimensional space). When a fourth point is added with an arbitrary labeling,

then a separation with only one line will not be possible in all cases. However,

when we project these four points into a three dimensional space, then again we

can find a plane that can correctly separate the points, base on the class labels that

was assigned to them. A polynomial kernel of second degree - K(x, y) = (x· y)2,

can easily project the data points from a surface into a three dimensional space.

The space in which a kernel projects the initial data is usually hard to process

directly, due to the very high number of dimensions (i.e., some kernels can project

the initial data into a space with an infinite number of dimensions. Therefore

SVMs rely directly on the kernel functions during both training and classification

phase. This requires the ability to solve a quadratic programming optimization

problem with linear constraints and techniques and programs for solving it

already exists. The trick is to be able to efficiently compute the kernel function.

6.1.2 The VC dimensions of SVMs: overfitting vs. generalization

A major advantage when using SVMs in machine learning (ML), is that we can

decide on a tradeoff between the machine’s capacity to learn and assimilate most

of the information given in the training data, and its ability to generalize

efficiently, on new unseen data. This tradeoff is made possible because of the

relative freedom that we have, in choosing the number of dimensions for the

space in which data will be projected. These dimensions are derived from the set

of features which define the data. If the number of dimensions is set too high,

then the machine can learn on the given data very well but might perform worse

on new instances (i.e., there is a risk of overfitting the data). In case of data

derived from natural language input, the number of features on the data

152

instances representing the input texts can be very high. Consider for example the

set of all the words, concepts or situations which might be contained in a text

instance. The goal in this case is to find a representation that is able to assimilate

all these different concepts and situations, but still be able to generalize well for

new instances. In other words, a good balance is desirable between allowing a

high capacity to assimilate many different situations, but at the same time not

overfit the data too much.

The second feature that SVMs offer is the ability to define a bound with a

certain probability, on the error rate for new data. Consider the simple case of

binary classification. Based on an empirical risk (defined as Remp in equation 6.3),

which represents the calculated error for the training set, Vapnik (Vapnik 1998)

proved that a bound, called the risk bound (defined as R in equation 6.4) can be

computed for the estimated error on the test set. The risk bound holds with a

chosen probability of 1− µ and depends on the Vapnik Chervonenkis (VC)

dimension (defined as the non-negative integer h in equation 6.5). The VC

dimension characterizes the capacity of the machine, which we discussed in

previous paragraph. It indicates what is the maximum number of training points,

Maxθ which can be shattered by a class of functions, θ (i.e., we can always find a

set of Maxθ points, for which, no matter what combination of class values is being

assigned to them, there exists a function in θ, that can cover them).

Remp(α) =
1

2l

l∑
i=1

|yi − f(xi, α)| (6.3)

R(α) =
∫ 1

2
|y − f(x, α)|dP (x, y) (6.4)

153

R(α) ≤ Remp(α) +

√
h(log(2l/h) + 1)− log(µ/4)

l
(6.5)

One important aspect regarding the risk bound, which needs further

commenting, is that it predicts the error in worst case scenario, but does not

guarantee it. From equation 6.5 it is easy to observe that, when the chosen

probability of 1− µ for the error bound is set to 1 (meaning 100% assurance that

the bound will hold), the bound actually goes to infinity (i.e.,

−log(µ/4) = −log0 =∞). However, if we are willing to take a calculated risk (say

for example, 1− µ = .95), then we are assured, with a certain degree of chance,

that on unseen data the SVM will not fail more than the estimated error bound.

Being able to calculate the risk bound offers a good starting point when

choosing between different families of kernel functions and is also the main idea

behind the theory of structural risk minimization (Shawe-Taylor et al. 1996).

Consider having the option to choose from several classes of functions, for which

we can separately compute their corresponding VC values. The idea is to choose

one function from each group (and a VC) and calculate the empirical risk from

which we can then approximate the risk bound. By comparing the approximated

risk bounds, one can gain useful insight on which group of functions is most

appropriate for the classification. This approach is recommended as opposed to

the other classic options that empirically decide, throughout experimentation,

which class of functions is best, for a particular learning task.

To get a better intuition on the real meaning of the VC value that is

characterizing a given kernel function, we must take a look at the space in which

the function is projecting the input data. For example, let us take the previous

simple case of a bidimensional space, where the separation hyperplane is defined

154

by a line, the VC value of any function that is projecting the data into this space, is

3. This means we can find a maximum of 3 points in this space, which can be

shattered by these functions, but not 4 or more. In general, in an n-dimensional

space, the VC would be n+1 (Anthony and Biggs 1995). Based on the formula for

calculating the risk bound, if we want to minimize the bound, then we need to set

the VC to a value that is as low as possible, which in consequence requires that

the number of dimensions to be low too. As long as the accuracy on the training

set is acceptable, the lower the number of dimensions defined, the tighter the

bound, suggesting that there is a lower risk of overfitting the data when there are

less dimensions. This is also in accordance with the Occam’s razor’s law which

tells us that the simplest explanation is often the best one.

6.1.3 SVMs for NLP related tasks

Due to their ability to work efficiently in highly-dimensional spaces, SVMs are a

good fit for tackling natural language processing problems such as the ones

addressed in this dissertation. In general, data that is derived from textual inputs

is characterized by a high number of features, which are extracted from the lexical

tokens composing the input texts and the syntactic relations between them. In

addition, SVMs ability to efficiently handle outliers and noise also goes well with

the nature of most NLP related tasks where, whenever some kind of natural

language based input is expected, the presence of irrelevant noise or ”special”

input instance, which do not conform to the rest of the data, is very probable.

SVMs can be used in two ways for learning and classification tasks. One is

similar to other machine learning approaches (e.g., Bayesian classifiers, decision

trees), by using standard kernels (like the ones previously listed in subsection

6.1.1) on a set of numeric features extracted from the data. We call this the classic

155

SVM approach. The other way is by developing customized kernels which are

more appropriate and specific to data of some particular learning task. For

example, most kernels that are used in NLP related tasks make use of

vocabularies of words to explode the number of dimensions for the space in

which the textual input data is projected. We call this the kernel-based approach. For

the first approach, the challenge is to find a good set of features to represent the

data and an optimum set of parameters for the learning algorithm. The second

approach requires finding a good and valid kernel function that is fitted for the

data and that can be computed in a fast and efficient manner, in order to make the

learning process practically feasible.

In previous work related to the task of measuring semantic similarity between

texts, we see that SVMs are commonly used with the classic approach. Dolan and

Brockett (Dolan, Quirk, and Brockett 2004; Brockett and Dolan 2005) used SVMs

in the creation of the MSR, the main corpus which we frequently use in our

current work1. Furthermore people have successfully used SVMs on the same

corpus, for the problem of paraphrase identification (Qiu, Kan, and Chua 2006;

Wan et al. 2006; Das and Smith 2009).

The real focus of the work presented in this chapter regards the second

approach, based on customized kernel functions. For NLP problems,

kernel-based methods have been mostly used before on tasks of document

clustering (Lodhi et al. 2002). In these tasks the input set of documents are

represented as vectors in a high-dimensional space, defined by a kernel function,

which measures the similarity between two documents, in regard to a relevant

1 The other two corpora that we use in our experiments, the ULPC and the RTE,
were, in most part, manually created and labeled by humans and human
experts

156

classification factor (e.g., same topic of discussion, or same writing style). In this

projected space, documents of a similar type should aggregate together in bulks

of data that is linearly separable from data characterizing other document types.

We are particularly interested in a special type of text-based kernel functions,

ranging from substring kernels, which compute a weighted-sum of common

substrings in two documents in order to classify them (Lodhi et al. 2002), to

dependency kernels, which compute dependency substring overlap (Kate 2008).

Along the same lines, we define our own kernel that quantifies the degree of

similarity and dissimilarity among two sentences given with each instance of our

datasets. To the best of our knowledge, no one has approached the paraphrase

identification task with a newly defined kernel function although standard

kernels have been used, as we previously mentioned. For instance, Wan et al.

(Wan et al. 2006) have used a small set of expert-defined features for the input

space together with a polynomial kernel available in WEKA, a machine learning

toolkit.

6.2. Kernels for Semantic Similarity Assessment

In this section we are going to propose various kernels which, in combination

with SVM classifiers, will allow us to qualitatively assess symmetric relations of

semantic similarity between texts. We are going to study two major groups of

kernels. First, we look at some simple lexical kernels, based on counting common

lexical tokens that are present in both input texts. Then we are going to look at

common syntactic information found between the texts, which is encoded in their

corresponding dependency trees.

In order to understand how these kernels work, we must compare them with

other text-based kernels, in particular those used for text classification. In a classic

157

problem of text classification (or clustering), the input is a text of medium or large

size (e.g., news, emails, documents) and the output is a labeling of this text,

according to some defined taxonomy of text-based concepts or categories. From a

machine learning point of view, a data instance is represented by one block of

input text (e.g., a paragraph or a document). A kernel function computes the

similarity between two data instances, by counting the lexical, syntactic or

semantic similarities found between their corresponding input texts. Based on

this, same label instances that share many similarities will be located closer in the

space projected by the kernel, which allows for a more probable linear separation

of the data. One simple SVMs kernel for this type of problem is to count the

number of common words or word sequences of two given instances. Such

kernels are a generalization from string to word sequences of the string kernel

proposed by Lodhi et al. (2002).

For our task, an instance of the input is represented by two pairs of text,

instead of one. Therefore, a kernel function in this case computes the similarity

between two pairs of texts, meaning that there are a total of four texts given as

input to the kernel, as opposed our previous kernel, which had only two input

texts. To compute similarities between two data instances (i.e., between two pairs

of texts), we must first compare the texts from each instance, to extract relevant

facts about the relation between them. Based on the relevant information

extracted from the comparison of the texts, our kernel function will then use this

to compare two instances of pairs, by looking at the similarities that the two

instances share, similarly as for the kernels used in text classification tasks. The

main assumption in this approach is that instances with many common

similarities or common dissimilarities between the texts which they enclose,

should be part of the same category or label class, which will confirm, or not, on

158

the existence of a semantic relationship between the texts. In a sense, our SVMs

are learning which of the information facts extracted from comparing the input

texts is relevant for the similarity relation that we are trying to assess.

Next, we are going to detail on the two groups of kernels that we study in this

chapter, for the task of measuring semantic similarity.

6.2.1 Lexical Kernels of Similarity and Dissimilarity

For our first group of kernels, we propose an approach to assess the similarity of

lexical similarities or dissimilarities between two input texts. Qui, Kan and Chua

(2006) previously suggested that in order to detect whether two input sentences

are paraphrases, one should look instead at the differences between them and

check if they are significant enough, for the sentences to be deemed semantically

different. Let us look for example at the following pair of sentences, where the

lexical differences are marked in italic font (we are comparing between only the

base form of words):

A. Mary went to the doctor yesterday.

B. I saw Mary going to the doctor the other day.

These sentences can be considered to be paraphrases, since they state the same

principal fact that Mary went to the doctor. The differences in this case merely

present some additional details which may be discarded, in certain contexts. We

expect that our SVMs should learn from examples like this, so that when they

encounter similar differences on new data, they should not consider these

differences as being the main cause for excluding the presence of a paraphrase

relation in the data. Let us consider now the next pair of paraphrase sentences:

159

A. Josh bought some shoes from the mall.

B. I saw Josh buying some shoes at the mall the other day.

The system should recognize the differences from the previous example and

ignore them when assessing the semantic similarity between the sentences. There

is another difference in these sentences, between the two prepositions from and at,

but these are also not significant enough for a difference in the semantic meaning

of the two texts. A kernel function that allows an SVM classifier to learn about

these types of differences, we call it a lexical dissimilarity kernel.

To implement such a lexical kernel based on dissimilarities, we first represent

each instance (two sentences which may be or not in a paraphrase relation) in the

dataset as a vector of dissimilarities. There is one dimension in the vector for each

word or sequence of words in the input sentences. More accurately, the

dimensions correspond to word-types, or sequences of word-types. Word-types

are unique words in the input texts. The value along each dimension in this

vectorial representation is non-zero if the corresponding word-type occurs in

sentences that form an instance. If a word type or sequence is not present in an

instance, the value is zero. Non-zero values can represent weights that measure

the importance of the dimension/word-type for a particular instance. Similar to

our previous methods, we can consider here for various weighting schemes, of

either local type, global type, or both. Based on this representation, we define a

kernel that efficiently computes the similarities between these vectors. That is,

two instances that have similar dissimilarities should be projected close to each

other in the feature space generated by this kernel.

We define the dissimilarity kernel value between two instances A and B of

paired sentences (SA1, SA2) and (SB1, SB2) as in Equation 6.6. We represent

160

sentences by their corresponding set of lexical tokens or word types (punctuation

included). We denote with SA1∆SA2 the symmetric difference between the two

sets, meaning the set of tokens that are present in SA1 or SA2 but not both, while

w1 ≡ w2 means the tokens are found to be equivalent.

DisK(A,B) =
∑

w1∈SA1∆SA2
w2∈SB1∆SB2

w1≡w2

weight(w1) ∗ weight(w2) (6.6)

The equivalence between the tokens can be judged from various angles,

depending on what is compared. We can compare the initial forms of the tokens,

or their base form or their part-of-speech. We could also define a relation of

equivalence based on the W2W similarity metrics that were discussed in Chapter

4. In this case, if the computed similarity between two tokens is above a preset

threshold value, then the tokens are considered to be equivalent, and not if

otherwise. In this current study, we only consider the simplest relations of

equivalence (i.e., compare words, lemmas, and parts-of-speech), leaving other

more complex relations for future work.

The weight function retrieves the weight for the corresponding token. In a

previous study done on these types of lexical kernels we found that if we do not

employ any type of local weighting scheme, such as frequency or log-type

frequency (see section 3.4), gave best performance scores on the MSR dataset. As

a consequence, we decided that we will not use any type of local weighting in this

study, in order to keep our experiments simple, allowing us to focus on other

parameters of the learning process, which might prove to be more important for

our task. In future work, we might want to experiment with global weighting

schemes also, such as entropy or inverse document frequency (Dumais 1991).

161

Consequently, we can define a lexical similarity kernel which is based on

looking at the common lexical tokens that are found between two input texts, as

in Equation 6.7.

SimK(A,B) =
∑

w1∈SA1∪SA2
w2∈SB1∪SB2

w1≡w2

weight(w1) ∗ weight(w2) (6.7)

There is one very important aspect about how we computed these kernels,

which is not apparent in our formulas. All the token that we consider are counted

only once during the computation process, meaning that, in the sums referred in

our formulas, each particular token in one instance is only used once, even if it is

equivalent with more than one token from the other instance.

As we will see in our experiments the similarity kernel is not very powerful,

since the important differences between the texts are ignored, and it will actually

perform better when used in combination with the dissimilarity kernel, as

indicated in Equation 6.8. We call this the kernel of similarities and dissimilarities,

or in short, the sim-diss kernel.

SimDisK(A,B) = SimK(A,B) +DisK(A,B) (6.8)

It can be easily proven that all these kernels are valid kernels for SVM

learning (i.e., they conform to Mercer’s condition), since there are inner products

in the space where the input data is projected. As mentioned before, the

dissimilarity kernel projects the input data in a space where the dimensions are

represented by all n-gram types that are found different between two input texts,

while the similarity kernel projects the data in a space where the dimensions are

representations of all n-gram types that are found common between the texts.

162

Since any sum of two valid kernels is also recognized as a valid kernel, it can be

concluded that the latter combination of previous two kernels is too a valid

kernel.

A big advantage of the lexical kernels that were presented here is their time

complexity, which is linear in the length of the input texts and ease of

interpretation by humans as the dimensions correspond to words or word

sequences.

6.2.2 Dependency-based kernels

The next group of kernels is more complex and is based on the overall syntactic

organization of a sentence, which is encoded in its associated tree of dependency

relations. The developing of these kernels were greatly inspired from the previous

work of Kate and Mooney (2008), where a dependency-based word subsequence

kernel was proposed to compute similarity between two given sentences as the

number of paths shared by their dependency trees. The main difference in our

kernels is that we compute similarity between two given pairs of inputs (so that is

a total of four sentences).

Given a pair of two input sentences, A1 and A2, in a first step, we mark in each

of their associated dependency trees, those nodes that are found to be common in

both trees. Then we create a list, LPsim, of all downward paths, starting from the

root, that are found common between the two trees. Similarly we create a list,

LPdis, of all paths that are present in one tree, but not the other. Since we worked

with symmetric similarity relations only, we include in this second list the distinct

paths from both trees.

After creating the two lists of dependency paths we are going to use them in a

kernel, just as we used the lists of common and distinct lexical tokens in our

163

previous lexical-based kernels. Given two instances, A and B, composed each of

two input sentences, A1 and A2, and respectively, B1 and B2, we are going to

count, for a similarity dependency-based kernel, all paths that are found common

in LPsim(A) and LPsim(B). Similarly, for a dissimilarity based, we are going to

count all paths that are found common in LPdiss(A) and LPdiss(B).

Since both lists, LPsim and LPdis, can be preemptively constructed before

starting the SVM learning process, the complexity of these kernels becomes linear

in the total number of common and distrinct dependency paths found in all four

input sentences. Likewise the case of lexical kernels, the dependecy kernels also

express an inner product between vectors in a space where the dimensions are

represented by the set of all common and distinct dependency-based paths that

are found in the instances of a dataset.

6.2.3 Experiments and Results

We run a suite of experiments with the two types of lexical and dependency

kernels and present how they perform on the MSR corpus. There are many

options to set up these kernels. First, there are the various preprocessing options

that we can select, some of which were previously presented in chapters 2 and 3.

We decided to use the OpenNLP parser for the lexical kernels, and the Stanford

parser for the dependency-kernels. In addition, we will use all of the extracted

lexical tokens (punctuation included) when computing the lexical kernels.

Because there is a very high number of dimensions for the space where the

data is projected by our kernels, we noticed that the SVMs perform very well on

the training set, but they are less accurate on the testing. This suggests that the

kernels have a tendency to overfit too much on the training data. In order to

improve on the generalization of the SVMs classifiers we modified the capacity (C)

164

factor, which is used by SVMs during the learning process (we previously

introduced this factor in subsection 6.1.2 of the current chapter). To increase

performance on the test set, we must give up some of the performance on the

training set, and this can be done by lowering the C factor from its initial value of

1. We therefore experimented with three representative values of C: 1, 0.1 and

0.01. We found out that for values lower than these, the performance decreases on

both sets of training and testing. We shall see in the reported results that for the

most part, when the C-factor is lowered, the performance in the training

decreases while the performance on the testing increases.

We report results on multiple variants for the lexical kernels: unigrams versus

bigrams, comparing words versus lemmas versus parts-of-speech, and finally

similarity versus dissimilarity versus a combination of both type of kernels. In all

our experiments that were made for this chapter we use the latest version of

LibSVM (Chang and Lin 2011), a java library for support vector machines. In a

previous work (Lintean and Rus 2011), we reported similar results when

evaluating the lexical kernels on the MSR dataset. In that work we experimented

with a different SVM library, called SVM-Light (Joachims 1999), which is a much

faster implementation of SVM classifier induction algorithm done in C. The

reason why we did not use SVMLight for our current experiments was because

the rest of our system was already done in Java, and LibSVM looked like a better

option to incorporate into our system. We therefore tested our kernels with the

LibSVM library and all the default learning parameters (e.g., the epsilon tolerance

of termination criterion was left at its .001 default value) except the capacity

factor, C-factor, mentioned in the previous paragraph.

The format in which we report the performance results for our kernels follows

the format which we previously used in sections 3.8, 4.6, and 4.7, with one

165

Table 6.1
Lexical Kernels on MSR, with OpenNLP parsing and raw lexical forms

Performance on Train Performance on Test
Kernel Type C-factor nSV Acc. Prec. Recall Acc. Prec. Recall
Sim 1.00 2864 .9814 .9880 .9844 .6649 .7542 .7358

0.10 3086 .8400 .8179 .9818 .6962 .7086 .9224
0.01 3065 .6904 .6876 .9924 .6806 .6776 .9913

Diss 1.00 2730 .9956 .9942 .9993 .7084 .7469 .8492
0.10 2859 .8781 .8558 .9855 .7171 .7277 .9180
0.01 2862 .6852 .6822 .9996 .6771 .6731 1.000

Sim-Diss 1.00 2964 1.000 1.000 1.000 .7136 .7631 .8256
0.10 2997 .9652 .9611 .9884 .7345 .7612 .8753
0.01 2933 .7107 .7020 .9935 .6881 .6829 .9913

difference. Instead of the classification threshold (which is not applicable for these

kernel methods) we will show the number of support vectors learned by the SVM

classifiers (nSV), since this will give us a good indication of how much

overtraining is done and how slow will the classifier perform (since for every new

case of classification, the new data instance is compared against all the support

vectors which were learned before).

Table 6.1 report results on the MSR corpus, when using a lexical kernel, where

the lexical tokens are compared using their raw, unchanged form. Three types of

kernels are compared, as was previously mentioned: similarity versus

dissimilarity versus the Sim-Diss kernel.

Our next tables, 6.2 and 6.3 report results on MSR, for the same lexical kernels,

when the base form of words is used for comparison, and consequently, the

part-of-speech..

From all these tables we can clearly see that the Sim-Diss kernel outperforms

the simple ones. The most important result that we obtained from these

experiments is that we managed to get perfect performance scores on the training

166

Table 6.2
Lexical Kernels on MSR, with OpenNLP parsing and base lexical forms

Performance on Train Performance on Test
Kernel Type C-factor nSV Acc. Prec. Recall Acc. Prec. Recall
Sim 1.00 2814 .9715 .9779 .9800 .6539 .7455 .7280

0.10 3005 .8187 .7988 .9778 .6945 .7053 .9285
0.01 2999 .6916 .6886 .9920 .6806 .6776 .9913

Diss 1.00 2601 .9909 .9892 .9975 .6945 .7414 .8300
0.10 2817 .8697 .8500 .9800 .7188 .7283 .9207
0.01 2846 .6850 .6820 .9996 .6771 .6731 1.000

Sim-Diss 1.00 2874 1.000 1.000 1.000 .6957 .7504 .8126
0.10 2909 .9531 .9470 .9858 .7183 .7521 .8596
0.01 2886 .7130 .7037 .9931 .6899 .6846 .9895

Table 6.3
Lexical Kernels on MSR, with OpenNLP parsing and part-of-speech forms

Performance on Train Performance on Test
Kernel Type C-factor nSV Acc. Prec. Recall Acc. Prec. Recall
Sim 1.00 2897 .6757 .6756 1.0000 .6649 .6649 1.0000

0.10 2716 .6754 .6754 1.0000 .6649 .6649 1.0000
0.01 2673 .6754 .6754 1.0000 .6649 .6649 1.0000

Diss 1.00 2532 .7188 .7382 .9045 .7188 .7348 .9032
0.10 2555 .7179 .7337 .9139 .7194 .7320 .9119
0.01 2662 .7002 .6954 .9895 .6829 .6820 .9799

Sim-Diss 1.00 2405 .7451 .7703 .8870 .7432 .7647 .8867
0.10 2440 .7414 .7659 .8888 .7391 .7583 .8919
0.01 2604 .7343 .7406 .9335 .7194 .7263 .9276

167

Table 6.4
Lexical Kernels on ULPC, with OpenNLP parsing

Performance on Train Performance on Test
Kernel Type C-factor nSV Acc. Prec. Recall Acc. Prec. Recall
Raw Form 1.00 917 .8846 .8681 .9254 .7034 .7224 .7436

0.10 1074 .7945 .7678 .8843 .7054 .6969 .8168
0.01 1291 .7051 .6673 .8980 .6854 .6585 .8828

Base Form 1.00 915 .8606 .8400 .9142 .6974 .7133 .7473
0.10 1058 .7812 .7511 .8856 .6914 .6854 .8059
0.01 1297 .6991 .6606 .9030 .6754 .6496 .8828

Part-of-speech 1.00 1070 .6985 .6860 .8072 .6754 .6718 .7949
0.10 1136 .6805 .6643 .8172 .6553 .6507 .7985
0.01 1278 .6518 .6169 .9254 .6653 .6293 .9451

set, and still have decent performance scores on the test set (see our results when

using Sim-Diss kernels with a C-factor of 1, in Tables 6.1 and 6.2) with an accuracy

of .7136 on the best case, which is comparable to result obtained by others (Corley

and Mihalcea 2005) on the MSR. Also we notice some very decent results

obtained on both the training and testing sets by using a Sim-Diss kernel (C-factor

= 1) with matching by part-of-speech (.7451 and .7432 on training and testing

respectively). This clearly shows that these lexical kernels are very efficient in

their learning of the various conditions that might be encoded in textual inputs.

Next, we tested the other corpus of symmetric similarity, the ULPC (see Table

6.4) but only with the Sim-Diss kernel, and on all three conditions of using raw,

base and part-of-speech form, when comparing the tokens.

From the results on the ULPC we see that the kernels perform very well on

both training and testing, when compared with our previous methods presented

in chapters 3 and 4. On the testing part we obtained best accuracy (.7054), when

matching the raw lexical forms with a C-factor of .1, best precision (.7224) on raw

168

Table 6.5
Dependency Kernels on MSR, with Stanford parsing

Performance on Train Performance on Test
Kernel Type C-factor nSV Acc. Prec. Recall Acc. Prec. Recall
Diss 1.00 2695 .9630 .9543 .9927 .6180 .7017 .7402

0.10 3045 .8994 .8768 .9902 .6597 .7044 .8413
0.01 3137 .7571 .7391 .9898 .6852 .6876 .9651

Sim-Diss 1.00 2604 .9706 .9647 .9927 .6174 .7065 .7262
0.10 2993 .9227 .9039 .9909 .6435 .7015 .8073
0.01 3151 7951 .7721 .9884 .6823 .6924 .9398

Diss-base 1.00 3888 .9998 .9996 1.0000 .6945 .7037 .9337
0.10 3934 .9971 .9964 .9993 .6980 .6996 .9564
0.01 3973 .8565 .8267 .9964 .6870 .6834 .9861

Sim-Diss-base 1.00 3910 .9998 .9996 1.0000 .6887 .6981 .9372
0.10 3925 .9988 .9989 .9993 .6916 .6988 .9425
0.01 3964 .9264 .9039 .9971 .6922 .6883 .9817

Sim-Diss-POS 1.00 2944 .9983 .9982 .9993 .6458 .7233 .7568
0.10 3289 .9831 .9772 .9982 .6678 .7271 .8012
0.01 3420 .8550 .8260 .9949 .6916 .6943 .9582

forms with C-factor equal to 1, and best recall (.9451) when using part-of-speech

tags with a C-factor of 0.01.

Regarding the dependency kernels, we tested these on MSR only (see Table

6.5, for comparison purposes, since we found out that they do not perform so well

on the symmetric relations of semantic similarity, at least in the form that were

currently defined. We looked at cases when comparing paths of only dependency

types, for two variants of kernels, the dissimilarity and the Sim-Diss kernels (the

similarity kernel was omitted, since we saw in previous experiments that it does

not perform so well on its own). Then we enhanced the paths with information

about the lexical forms that are closed by the dependency relations. Dissimilarity

and Sim-Diss kernels were tested when using the base form of the tokens, and a

Sim-Diss kernel was evaluated when using the part-of-speech tags of tokens.

169

Although, in theory, these types of kernels should be more powerful than the

more simple ones, in practice they do not confirm this. We realize that there is a

need for more research to be done on these types of kernels, which could also

prove useful for cases when we wish to compute relations of asymmetric

semantic similarity, such as entailment.

170

CHAPTER 7

CONCLUSIONS

Measuring semantic similarity between texts defines one very important class of

problems in the field of natural language processing. The applications of such

measures of text-to-text semantic similarity are abounding, from automatic

understanding of natural language input, to information seeking and textual data

mining and clustering. Plenty of research has been done so far on this topic and

many methods have been proposed and researched. The current dissertation is an

attempt to merge a lot of these ideas, and propose some new ones along, into a

unique and well defined framework for representing the semantic meaning of the

textual input and then exploit this representation to construct several methods for

computing semantic similarity between texts.

In this dissertation we tried to give a broad overview of all the possibilities

that one needs to be aware of when working with natural language input.

Throughout our presented experiments we have shown readers a complete

picture of the problem, with many detailed explanations, tables and numbers,

which illustrate what it really means to fully evaluate a proposed method, given

all the possible angles of a problem. Our experiments have shown how important

is a simple step of preprocessing the input and how changing a small parameter

in the method of preprocessing the data can mean the crucial difference in

performance between a good and a mediocre system.

171

7.1. Previous Work

There has been a renaissance recently for exploring computational approaches to

detect text-to-text semantic relations. The recent developments were driven

primarily by the creation of standardized data sets for the major relations of

entailment (Dagan, Glickman, and Magnini 2005), paraphrasing (Dolan, Quirk,

and Brockett 2004), and more recently for elaboration (McCarthy and McNamara

2009).

Paraphrase identification in particular has been explored in the past by many

researchers, especially after the release of the MSR Paraphrase Corpus (Dolan,

Quirk, and Brockett 2004). We describe in this section several previous studies

that are most related to our approach and leave others out, e.g., (Wu 2005;

Kozareva and Montoyo 2006) due to space reasons.

Previous attempts to address the task of paraphrase identification range from

simple to sophisticated. An example of a simple, yet quite accurate, approach is

the one proposed by Zhang and Patrick (2005) who reported best results when

using a small set of word substring overlap features (they used only four features)

in combination with a decision tree learning method. In this work, they also

described an ingenious solution to identify sentence-level paraphrase pairs by

transforming source sentences into canonicalized text forms at the lexical and

syntactic level, i.e., generic and simpler forms than the original text. One of the

surprising findings is that the baseline system based on a supervised decision tree

classifier with simple lexical matching features lead to better results when

compared to the more sophisticated approaches that were experimented by them

or others. They also revealed limitations of the MSR Paraphrase Corpus. The fact

that their text canonicalization features did not lead to better than the baseline

172

approach supports their findings that the sentential paraphrases, at least in the

MSR corpus, share more words in common than one might expect given the

standard definition of a paraphrase. The standard definition implies to use

different words when paraphrasing. Zhang and Patrick used decision trees to

classify the sentence pairs making their approach a supervised one as opposed to

other approaches which are only minimally supervised (the most common of these

types is when a similarity score is computed and then a threshold is learned from

the training data, which will then be used to classify the instances).

The simple approach of Zhang and Patrick is slightly better than the best

results reported by Mihalcea, Corley, and Strapparava (2006) who proposed an

algorithm that extends word-to-word similarity metrics into a text-to-text

semantic similarity metric based on which they decide whether two sentences are

paraphrases or not. To obtain the semantic similarity between individual words,

they used WordNet similarity package (Pedersen, Patwardhan, and Michelizzi

2004) which we will describe in more detail in chapter 3. Mihalcea and colleagues

report best results when using an average over all word-to-word similarity

metrics. It seems that one problem with Mihalcea and colleagues approach is the

greedy strategy used to semantically match a word from one sentence to a word

from the other sentence in a pair. They match the word with the maximum

similarity among all the words in the second sentence.

Fernando and Stevenson (2008) on the other hand used the same basic idea of

using word similarity metrics to identify paraphrases but instead of adopting a

greedy strategy they opted for a more global strategy in which the similarity of all

pairs of words is considered instead of just the maximum similarities. Fernando

and Stevensons approach is called matrix similarity and provided significantly

173

better results than Mihalcea and colleagues in terms of accuracy. However,

(Mihalcea, Corley, and Strapparava 2006) had better recall results.

Rus and colleagues (Rus et al. 2008a) addressed the task of paraphrase

identification by computing the degree of subsumption at lexical and syntactic

level between two sentences in a bidirectional manner: from Text A to Text B and

from Text B to Text A. The approach relied on a unidirectional approach that was

initially developed to recognize the sentence-to-sentence relation of entailment

(Rus et al. 2008a). Rus and colleagues’ approach only used similarity to decide

paraphrasing, ignoring dissimilarities which could be important to the final

decision. The similarity was computed as a weighted sum of lexical matching, i.e.,

direct matching of words enhanced with synonymy information from WordNet,

and syntactic matching, i.e., dependency overlap. Dependencies were derived

from a phrase-based parser which outputs the major phrases in a sentence and

organizes them hierarchically into a parse tree.

Another example of a sophisticated approach is the one recently proposed by

Das and Smith (Das and Smith 2009) which employs a probabilistic approach that

uses both syntactic and lexical semantics information to decide whether two

sentences are paraphrases or not.

From one perspective, the above methods can be classified as

similarity-centered, dissimilarity centered, or a combination of similarity and

dissimilarity approaches. The similarity-centered (Mihalcea, Corley, and

Strapparava 2006; Fernando and Stevenson 2008; Das and Smith 2009) focus on

how similar two sentences are, based on which a similarity score is computed

which is then used to make a decision: paraphrase or not. On the other hand,

other researchers observed that sentential paraphrases in general have a high

174

degree of lexical overlap and thus decided to focus on dissimilarities between

sentences in a pair.

Qiu and colleagues (Qiu, Kan, and Chua 2006) proposed a two-phase

architecture for paraphrase identification. In the first phase, they identified

similarities between two sentences, while in the second phase the dissimilarities

were classified with respect to their relevance in deciding the presence of

paraphrase. Their approach uses predicate argument tuples that capture both

lexical and syntactic dependencies among words to find similarities between

sentences. The first phase is similar to our approach for detecting common

dependencies. In the second phase, they used a supervised classifier to detect

whether the dissimilarities are important.

A previous work which defines its research problem in terms very similar to

ours is the work of Li and colleagues (2006). Like us, they propose a method to

measure the semantic similarity between very short texts, such as sentences, by

using information from structure lexical databases and from corpus statistics. The

input sentences are organized as ordered lists of words which are compared at

word level, based on word-to-word semantic similarity measures extracted from

WordNet (Miller 1995). For every word in the first sentence, the most semantically

similar word is searched in the second sentence and if the similarity score is above

a certain threshold, then the words are paired in a computed vector-based

representation. This representation also takes into account the order of words in

the sentences, which they consider to be a representative aspect of primary

syntactic information. One drawback they report to their method is that is relies

on single word-to-word matching, so examples which use multiple words to

represent concept, as in unmarried man versus bachelor don’t work too well. At the

time this research was done, there wasn’t any available corpus to evaluate the

175

proposed method, so Li and colleagues created their own small set of testing data,

consisting of 30 instances of paired definitions of words with similar meanings.

The instances were manually labeled by multiple annotators on 0 to 4 fixed point

scale (0 - not similar; 4 - similar) and the scores were then averaged. For

evaluation, they report performance in terms of correlation (r = 0.816) and

compared it the average agreement scores between annotators (r = 0.825).

As in Corley and Mihalcea (Corley and Mihalcea 2005), Li and colleagues’

method quantifies the degree of similarity between the inputs, while the

dissimilarity aspect is not emphasized enough. Looking only at the similarity

factor is common when working with larger texts where, for most of the time, to

purpose is to search for semantically similar documents and less to evaluate

whether two documents are semantically similar or not. On shorter texts

however, we believe it is crucial to study the semantic small differences between

the inputs, where for example the simple presence of a negation can significantly

change the meaning of a sentence.

To summarize some of this previous work and compare it with our current

work done on the MSR corpus, Table 7.1 presents best results reported by other

researchers with their main approaches. We do not report results on incomplete

data sets such as the ones reported by (Wan et al. 2006) who eliminated several

hundred instances from both training and testing due to a technical problem they

encountered with the syntactic parser they used. From the table, we observe that

most of our methods presented in this dissertation provide competitive results in

terms of accuracy, precision and recall. Increasing precision for paraphrase

identification on the MSR corpus seems to be more challenging than obtaining

high recall. Extremely high recall, in the upper 90s, can be easily obtained with

176

Table 7.1
Performance results of previous work done on MSR

Acc. Prec. Recall
Corley & Mihalcea, 2005 71.50 72.30 92.50
Zhang & Patrick, 2005 71.90 74.30 88.20
Zhang & Patrick (baseline) 72.30 78.80 79.80
Mihalcea et al., 2006 70.30 69.60 97.70
Qui et al., 2006 72.00 72.50 93.40
Lintean & Rus, 2009 72.06 74.04 89.28
Fernando & Stevenson, 2008 74.10 75.20 91.30
Das & Smith, 2009 73.86 79.57 86.05
Wan et al. (repl. in Das&Smith) 75.42 76.88 90.14

very simple lexical overlap methods enhanced with lexical semantics (Mihalcea,

Corley, and Strapparava 2006; Wan et al. 2006).

7.2. Future Directions

On several ocasions in previous chapters, where various methods of semantic

similarity assessment were presented, we suggested a few interesting ideas on

how our current research can be improved. This section reviews and summarizes

some of these ideas.

Throughout the last four chapters, we presented methods of semantic

similarity assessment of many varieties and many options and parameters to

choose from. We did not experiment with many of the possible variants on these

methods, and future research might explore all this space of possibilities and

might find some variants of the proposed methods that are actually more accurate

than the ones tested and presented in this current work.

In the fourth chapter, where we present methods based on word-to-word

semantics, we suggest the possibility of how one can improve the pairing of

177

words using a simple greedy approach, by using some methods of optimal

matching. Unfortunately, these latter methods depend strongly on the

word-to-word measures that are being used, which in some cases are not

sufficient to find the correct optimal match. This suggest that when matching

words between two texts, one should also look at the context in which the words

are being used (i.e., what are their neighboring words, or which words do they

syntactically relate to). In the same chapter, section 4.8, we suggested another way

for representing the meaning of words in vectorial structures instead of LSA, and

that is through the Latent Dirichlet Allocation (LDA) approach. Since LDA offers

a few extra benefits when it comes to topic analysis and word sense

disambiguation, we would encourage it to be further explored within the context

of semantic similarity assessment.

The idea for using kernels to measure text-to-text semantic similarity is

promising. Kernel methods used in combination with SVM learning are very

powerful for processing natural language due to their ability to assimilate any

type of information to any specified degree of detail. Although, in case too much

detail is allowed to be assimilated, there is a likely risk for overfitting the data,

SVMs are well known for handling outliers fairly well. In Chapter 6 we

introduced the theory of kernel methods and SVM learning and we presented

some basic lexical kernels that rely on the lexical dissimilarities between the texts.

For future work, we plan to do more experiments on the lexical kernels proposed

and create some new, more complex kernels for the task of semantic similarity

assessment. A strong limitation of our current kernels is that they cannot handle

the asymmetric relations of semantic similarity. It would be a good idea to further

research this problem and see if these kernels can be adapted so that they could

also handle those types of asymmetric relations.

178

BIBLIOGRAPHY

References
Androutsopoulos, Ion and Prodromos Malakasiotis. 2010. A survey of paraphrasing and

textual entailment methods. Journal of Artificial Intelligence Research, 38:135–187.
Anthony, Martin and Norman Biggs. 1995. Pac learning and neural networks. In

Michael A. Arbib, editor, The handbook of brain theory and neural networks. MIT Press,
Cambridge, MA, USA, pages 694–697.

Azevedo, Roger, Amy Witherspoon, Arthur C. Graesser, Danielle McNamara, Amber
Chauncey, Emily Siler, Zhiquiang Cai, Vasile Rus, and Mihai Lintean. 2008. Metatutor:
An adaptive hypermedia system for training and fostering self-regulated learning about
complex science topics. In Meeting of Society for Computers in Psychology, Chicago, IL.

Baeza-Yates, Ricardo and Berthier Ribeiro-Neto. 1999. Modern Information Retrieval. ACM
Press.

Banerjee, S. and T. Pedersen. 2003. Extended gloss overlaps as a measure of semantic
relatedness. In In Proceedings of the 18th International Joint Conference on Artificial
Intelligence, pages 805–810.

Barzilay, Regina and Lillian Lee. 2003. Learning to paraphrase: An unsupervised
approach using multiple-sequence alignment. In In HLT-NAACL 2003: Main Proceedings,
pages 16–23.

Berry, Michael W., Susan T. Dumais, and Gavin W. O’Brien. 1995. Using linear algebra for
intelligent information retrieval. SIAM Review, 37:573–595.

Bies, Ann, Mark Ferguson, Karen Katz, and Robert MacIntyre. 1995. Bracketing
guidelines for treebank ii style. Penn Treebank Project.

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022.

Brockett, Chris and William B. Dolan. 2005. Support vector machines for paraphrase
identification and corpus construction. In In Proceedings of the 3rd International Workshop
on Paraphrasing, pages 1–8.

Burges, Christopher J. C. 1998. A tutorial on support vector machines for pattern
recognition. Data Minning Knowledge Discovery, 2:121–167, June.

Chang, Chih-Chung and Chih-Jen Lin. 2011. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27. Software
available at: http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Collins, Michael. 1996. A new statistical parser based on bigram lexical dependencies. In
In Proceedings of the 34th Annual Meeting of the ACL, Santa Cruz.

Corley, Courtney and Rada Mihalcea. 2005. Measuring the semantic similarity of texts. In
In Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and
Entailment. Ann Arbor, MI.

179

Covington, Michael A. 1990. A dependency parser for variable-word-order languages.
Technical report, University of Georgia, Athens, January.

Cristianini, Nello and John Shawe-Taylor. 2000. An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press.

Dagan, Ido, Oren Glickman, and Bernardo Magnini. 2005. The pascal recognising textual
entailment challenge. In In Proceedings of the PASCAL Challenge Workshop on Recognizing
Textual Entailment.

Das, Dipanjan and Noah A. Smith. 2009. Paraphrase identification as probabilistic
quasi-synchronous recognition. In In Proceedings of the Joint Conference of the Annual
Meeting of the ACL and the International Joint Conference on NLP, Singapore, August.

de Marneffe, Marie-Catherine, Bill MacCartney, and Christopher D. Manning. 1993.
Generating typed dependency parses from phrase structure parses. In In Proceedings of
LREC-06, pages 449–454.

Dessus, Philippe. 2009. An overview of lsa-based systems for supporting learning and
teaching. In Proceeding of the 2009 conference on Artificial Intelligence in Education: Building
Learning Systems that Care: From Knowledge Representation to Affective Modelling, pages
157–164, Amsterdam, The Netherlands, The Netherlands. IOS Press.

Doddington, George. 2002. Automatic evaluation of machine translation quality using
n-gram co-occurrence statistics. In Proceedings of the second international conference on
Human Language Technology Research, HLT ’02, pages 138–145, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Dolan, Bill, Chris Quirk, and Chris Brockett. 2004. Unsupervised construction of large
paraphrase corpora: Exploiting massively parallel news sources. In In Proceedings of 20th
International Conference on Computational Linguistics (COLING).

Dumais, Susan T. 1991. Improving the retrieval of information from external sources.
Behavior Research Methods, Instruments and Computers, 23:229–236.

Fernando, Samuel and Mark Stevenson. 2008. A semantic similarity approach to
paraphrase detection. In In Proceedings of the Computational Linguistics UK (CLUK 2008).

Finch, Andrew, Young Sook Hwang, and Eiichiro Sumita. 2005. Using machine
translation evaluation techniques to determine sentence-level semantic equivalence. In
In Proceedings of the 3rd International Workshop on Paraphrasing (IWP2005).

Graesser, Arthur C., Andrew Olney, Brian C. Haynes, and Patrick Chipman. 2005.
Autotutor: A cognitive system that simulates a tutor that facilitates learning through
mixed-initiative dialogue. In In Cognitive Systems: Human Cognitive Models in Systems
Design. Mahwah: Erlbaum.

Graesser, Arthur C., Phanni Penumatsa, Matthew Ventura, Zhiqiang Cai, and Xiangen
Hu, 2007. Handbook of Latent Semantic Analysis, chapter Using LSA in AutoTutor:
Learning through Mixed-initiative Dialogue in Natural Language, pages 243–262.
Lawrence Erlbaum Associates.

Harabagiu, Sanda, A Harabagiu, Dan Moldovan, Marius Pasaca, Rada Mihalcea, Mihai
Surdeanu, Razvan Bunescu, Roxana Girju, Vasile Rus, and Paul Morarescu. 2000.
Falcon: Boosting knowledge for answer engines. In In Proceedings of The Ninth Text
REtrieval Conference (TREC 9), pages 479–488.

Hays, David G. 1964. Dependency theory: A formalism and some observations.
Languages, 40:511–525.

180

Heilman, Michael and Noah A. Smith. 2010. Tree edit models for recognizing textual
entailments, paraphrases, and answers to questions. In In Proceedings of the
NAACL/HLT), Los Angeles, US.

Hirst, Graeme and David St-Onge. 1998. Lexical chains as representations of context for
the detection and correction of malapropisms. WordNet: An electronic lexical database.

Ibrahim, Ali, Boris Katz, and Jimmy Lin. 2003. Extracting structural paraphrases from
aligned monolingual corpora. In In Proceedings of the ACL Workshop on Paraphrasing,
pages 57–64.

Iordanskaja, Lidija, Richard Kittredge, and Alain Polguere, 1991. Natural Language
Generation in Artificial Intelligence and Computational Linguistics, chapter Lexical selection
and paraphrase in a meaning-text generation model, pages 293–312. Kluwer Academic
Publishers, Norwell, MA, USA.

Jiang, Jay J. and David W. Conrath. 1997. Semantic similarity based on corpus statistics
and lexical taxonomy. In Proc. of the Int’l. Conf. on Research in Computational Linguistics,
pages 19–33.

Jing, Liping, Lixin Zhou, Michael K. Ng, and Joshua Zhexue Huang. 2006.
Ontology-based distance measure for text clustering. In In Proceedings of the Fourth
Workshop on Text Mining (SIAM-06, Bethesda, Maryland.

Joachims, Thorsten, 1999. Advances in Kernel Methods - Support Vector Learning, chapter
Making large-scale SVM learning practical. MIT Press.

Jurafsky, Daniel and James H. Martin. 2002. Speech and Language Processing. Prentice Hall
Series in Artificial Intelligence. Prentice Hall, 2nd edition edition, May.

Kate, Rohit J. 2008. A dependency-based word subsequence kernel. In In Proceedings of
EMNLP.

Kozareva, Zornitsa and Andrs Montoyo, 2006. Advances in Natural Language Processing:
Lecture Notes in Computer Science, volume 4139, chapter Paraphrase Identification on the
basis of Supervised Machine Learning Techniques, pages 524–533. Springer-Verlag
Berlin Heilderberg.

Kuhn, H. W. 2005. The hungarian method for the assignment problem. Naval Research
Logistics, 52:7–21.

Landauer, Thomas K., Danielle S. McNamara, Simon Dennis, and Walter Kintsch. 2007.
Handbook of Latent Semantic Analysis. Mahwah, NJ: Erlbaum.

Leacock, Claudia and Martin Chodorow, 1998. WordNet, An Electronic Lexical Database,
chapter Combining local context and WordNet sense similarity for word sense
identification. The MIT Press.

Li, Yuhua, David McLean, Zuhair A. Bandajar, James D. O’Shea, and Keeley Crockett.
2006. Sentence similarity based on semantic nets and corpus statistics. IEEE Transactions
on Knowledge and Data Engineering, 18(8):1138–1150.

Lin, Dekang. 1993. Principle-based parsing without overgeneration. In In Proceedings of
ACL.

Lin, Dekang. 1998. An information-theoretic definition of similarity. In In Proceedings of the
15th International Conference on Machine Learning, Madison, WI.

Lintean, Mihai and Vasile Rus. 2011. Dissimilarity kernels for paraphrase identification.
In In proceedings of Twenty-Fourth International FLAIRS Conference, Palm Beach, FL.

181

Lintean, Mihai, Vasile Rus, and Arthur C. Graesser. 2008. Using dependency relations to
decide paraphrasing. In In Proceedings of the Society for Text and Discourse Conference.

Lodhi, Huma, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins.
2002. Text classification using string kernels. Journal of Machine Learning Research,
2:419–444.

Madnani, Nitin and Bonnie J. Dorr. 2010. Generating phrasal and sentential paraphrases:
A survey of data-driven methods. Computational Linguistics, 36.

Malakasiotis, Prodromos. 2009. Paraphrase recognition using machine learning to
combine similarity measures. In In Proceedings of the ACL-IJCNLP, Suntec, Singapore,
August.

Manning, Christopher D. and Heinrich Schutze. 1999. Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA.

Martin, Dian I. and Michael W. Berry, 2007. Handbook of latent semantic analysis, chapter
Mathematical foundations behind latent semantic analysis, pages 35–55. Lawrence
Erlbaum Associates.

McCarthy, Philip M. and Danielle S. McNamara. 2009. User-language paraphrase corpus
challenge. Online at https://umdrive.memphis.edu/pmmccrth/public/Paraphrase
Corpus/Paraphrase site.htm.

McCarthy, Philip M., Vasile Rus, Scott A. Crossley, Arthur C. Graesser, and Danielle S.
McNamara. 2008. Assessing forward-, reverse-, and average-entailer indices on natural
language input from the intelligent tutoring system, istart. In In proceedings of
Twenty-First International FLAIRS Conference.

McKeown, Kathleen R. 1983. Paraphrasing questions using given and new information.
Comput. Linguist., 9:1–10, January.

McNamara, Danielle S., Chutima Boonthum, and Keith Millis, 2007. Handbook of Latent
Semantic Analysis., chapter Evaluating self-explanations in iSTART: comparing
word-based and LSA algorithms, pages 227–241. Lawrence Erlbaum Associates.

McNamara, Danielle S., Irwin B. Levinstein, and Chutima Boonthum. 2004. istart:
interactive strategy training for active reading and thinking. Behavioral Research Methods,
Instruments, and Computers, 36(2):222–33.

Mihalcea, Rada, Courtney Corley, and Carlo Strapparava. 2006. Corpus-based and
knowledge-based measures of text semantic similarity. In In Proceedings of the American
Association for Artificial Intelligence. Boston, July.

Miller, George A. 1995. Wordnet: A lexical database for english. Communications of the
ACM, 38(11):39–41.

Moschitti, Alessandro. 2009. Syntactic and semantic kernels for short text pair
categorization. In In Proceedings of the 12th Conference of EACL, pages 576–584, Athens,
Greece.

Nakov, Preslav, Antonia Popova, and Plamen Mateev. 2001. Weight functions impact on
lsa performance. In In Proceedings of the EuroConference Recent Advances in Natural
Language Processing, pages 187–193.

Palmer, Martha, Paul Kingsbury, and Daniel Gildea. 2005. The proposition bank: An
annotated corpus of semantic roles. Computational Linguistics, 31.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei jing Zhu. 2001. Bleu: a method for
automatic evaluation of machine translation. In Meeting of the Association for

182

Computational Linguistics.
Park, Eui-Kyu, Dong-Yul Ra, and Myung-Gil Jang. 2005. Techniques for improving web

retrieval effectiveness. Information Processing and Management, 41(5):1207–1223.
Patwardhan, Siddharth. 2003. Incorporating Dictionary and Corpus Information into a

Context Vector Measure of Semantic Relatedness. Master’s thesis, University of
Minnesota, Duluth, August.

Patwardhan, Siddharth, Satanjeev Banerjee, and Ted Pedersen. 2003. Using measures of
semantic relatedness for word sense disambiguation. In In Proceedings of the Fourth
International Conference on Intelligent Text Processing and Computational Linguistics
(CICLING-03, pages 241–257.

Pedersen, Ted, Siddharth Patwardhan, and Jason Michelizzi. 2004. Wordnet::similarity -
measuring the relatedness of concepts. In In Proceedings of Fifth Annual Meeting of the
North American Chapter of the Association for Computational Linguistics (NAACL-2004),
pages 38–41, Boston.

Porter, M. F., 1997. An algorithm for suffix stripping, pages 313–316. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Qiu, Long, Min-Yen Kan, and Tat-Seng Chua. 2006. Paraphrase recognition via
dissimilarity significance classification. In In Proceedings of EMNLP, pages 18–26.

Ramage, Daniel, Anna N. Rafferty, and Christopher D. Manning. 2009. Randomwalks for
text semantic similarity. In In Proceedings of the 2009 Workshop on Graph-based Methods for
Natural Language Processing, Suntec, Singapore.

Resnik, Philip. 1995. Using information content to evaluate semantic similarity in a
taxonomy. In In Proceedings of the 14th International Joint Conference on Artificial
Intelligence, pages 448–453.

Rinaldi, Fabio, James Dowdall, Kaarel Kaljurand, and Michael Hess. 2003. Exploiting
paraphrases in a question answering system. In In Proceedings of the 2nd International
Workshop in Paraphrasing, pages 25–32. Saporo, Japan.

Ruppenhofer, Josef, Michael Ellsworth, Miriam R. L. Petruck, Christopher R. Johnson, and
Jan Scheffczyk. 2005. FrameNet II: Extended theory and practice. Technical report, ICSI.

Rus, Vasile and Arthur C. Graesser. 2007. Lexico-syntactic subsumption for textual
entailnment. In Recent Advances in Natural Language Processing IV: Selected Papers from
RANLP 2005.

Rus, Vasile, Mihai Lintean, Sajjan Shiva, and Darko Marinov. 2010. Automatic detection of
duplicate bug reports using word semantics. In In Proceedings of the 7th IEEE Working
Conference on Mining Software Repositories. Cape Town, South Africa.

Rus, Vasile, Philip M. McCarthy, Mihai C. Lintean, Danielle S. McNamara, and Arthur C.
Graesser. 2008a. Paraphrase identification with lexico-syntactic graph subsumption. In
In proceedings of Twenty-First International FLAIRS Conference.

Rus, Vasile, Philip M. McCarthy, Danielle S. McNamara, and Arthur C. Graesser. 2008b. A
study of textual entailment. International Journal on Artificial Intelligence Tools,
17(4):659–685.

Seddah, Djame, Grzegorz Chrupala, Ozlem Cetinoglu, Josef van Genabith, and Marie
Candito. 2010. Lemmatization and lexicalized statistical parsing of morphologically rich
languages: the case of french. In Proceedings of the NAACL HLT 2010 First Workshop on
Statistical Parsing of Morphologically-Rich Languages, SPMRL ’10, pages 85–93,

183

Morristown, NJ, USA. Association for Computational Linguistics.
Shawe-Taylor, John, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony. 1996. A

framework for structural risk minimisation. In Proceedings of the ninth annual conference
on Computational learning theory, COLT ’96, pages 68–76, New York, NY, USA. ACM.

Vapnik, Vladimir N. 1998. Statistical Learning Theory. Wiley-Interscience, September.
Wan, Stephen, Mark Dras, Roberd Dale, and Cecile Paris. 2006. Using dependency-based

features to take the para-farce out of paraphrase. In In Proceedings of ALTW.
Webster, Jonathan J. and Chunyu Kit. 1992. Tokenization as the initial phase in nlp. In

Proceedings of the 14th conference on Computational linguistics - Volume 4, pages 1106–1110,
Morristown, NJ, USA. Association for Computational Linguistics.

Weeds, Julie, David Weir, and Bill Keller. 2005. The distributional similarity of sub-parses.
In In Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and
Entailment, pages 7–12, Ann Arbor, Michigan, June. Association for Computational
Linguistics.

Witten, Ian H. and Eibe Frank. 2005. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, San Francisco, 2nd edition edition.

Wu, Dekai. 2005. Recognizing paraphrases and textual entailment using inversion
transduction grammars. In In Proceedings of the ACL Workshop on Empirical Modeling of
Semantic Equivalence and Entailment, pages 25–30. Ann Arbor.

Wu, Zhibiao and Martha Stone Palmer. 1994. Verb semantics and lexical selection. In In
Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages
133–138.

Zanzotto, Fabio Massimo, Marco Pannacchiotti, and Alessandro Moschitti. 2009. A
machine learning approach to textual entailment recognition. Natural Language
Engineering, 15(4):551–582.

Zhang, Yitao and Jon Patrick. 2005. Paraphrase identification by text canonicalization. In
In Proceedings of the Australasian Language Technology Workshop.

184

