
December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

Large Scale Experiments with Naive Bayes and Decision Trees For Function Tagging

MIHAI LINTEAN

Department of Computer Science, Institute for Intelligent Systems
The University of Memphis, Memphis, TN 38152, USA

M.Lintean@memphis.edu

VASILE RUS

Department of Computer Science, Institute for Intelligent Systems
The University of Memphis, Memphis, TN 38152, USA

vrus@memphis.edu

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

This paper describes the use of two machine learning techniques, naive Bayes and decision trees, to
address the task of assigning function tags to nodes in a syntactic parse tree. Function tags are extra
functional information, such as logical subject or predicate, that can be added to certain nodes in syn-
tactic parse trees. We model the function tags assignment problem as a classification problem. Each
function tag is regarded as a class and the task is to find what class/tag a given node in a parse tree
belongs to from a set of predefined classes/tags. The paper offers the first systematic comparison of the
two techniques, naive Bayes and decision trees, for the task of function tags assignment. The compar-
ison is based on a standardized data set, the Penn Treebank, a collection of sentences annotated with
syntactic information including function tags. We found out that decision trees generally outperform
naive Bayes for the task of function tagging. Furthermore, this is the first large scale evaluation of
decision trees based solutions to the task of functional tagging.

Keywords: natural language processing; function tags; machine learning; naive Bayes; decision trees.

1. Introduction

Syntactic information is an important processing step to many language processing appli-
cations such as Anaphora Resolution 1, Machine Translation 2, and Question Answering
3.

We illustrate the importance of syntactic information with an example from Question
Answering. In Question Answering, given a question, e.g. What is the capital of Italy?, the
task is to retrieve a short answer to the question, e.g. Rome. The length of the answer must
be a sentence or less. The answer should be retrieved from a large collection of text, in the
order of millions of documents (gigabytes of text). A typical Question Answering system4

first locates a set of candidate answer sentences from the collection based on shallow tech-
niques that mainly use keywords from the question. A deeper analysis is then performed
on the candidate sentences. The deep analysis relies on various types of linguistic informa-
tion: lexical, syntactic, and semantic. To show the importance of the syntactic information

1

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

2 Mihai Lintean and Vasile Rus

to distinguish between correct and incorrect candidate answer sentences, we pick question
481 from the NIST’s QA tracka: Who shot Billy the Kid? The two candidate answers that
can be retrieved from the 5 gigabytes collection of text provided by NIST are: Billy the Kid
shot the rope and Billy the Kid was shot and killed by Sheriff Pat Garrett. These candidate
sentences are extracted as possible answers because they contain the two keywords from
the question: ”Billy the Kid” and ”shot”. However, only the second sentence contains the
correct answer to the question. To determine the sentence with the correct answer from the
two candidate answer sentences, we can use syntactic information. The question inquires
about the logical subject of a shooting event whose object is Billy the Kid. Thus, a correct
answer sentence should talk about a shooting event that has Billy the Kid as its direct ob-
ject. The logical subject of the shooting event in the correct answer sentence would be the
answer to the question. In the first candidate sentence, the object of the verb shoot is the
rope which does not match the object of the verb shoot in the question, Billy The Kid. The
second candidate answer sentence meets the syntactic constraints imposed by the question
and thus it is a correct answer sentence. The logical subject of the shooting event in this
sentence, Sheriff Pat Garrett, is the correct answer. In this paper, we use naive Bayes and
decision trees based classifiers to build a functional tagger that can retrieve syntactic infor-
mation of the type needed in the above example. More specifically, we augment syntactic
parse trees, the output of state-of-the-art syntactic parsers, with functional tags such as log-
ical subject. Function tags are extra labels attached to nodes, which represent phrases, in a
parse tree. Function tags augment the syntactic and semantic roles of the nodes/phrases.

Syntactic parsing in its most general definition may be viewed as discovering the un-
derlying syntactic structure of a sentence. The specificities include the types of elements
and relations that are retrieved by the parsing process and the way in which they are rep-
resented. For example, Treebank-style parsers5 retrieve a hierarchical organization (tree)
of smaller elements (called phrases, e.g. noun phrases - NP, verb phrases - VP, sentence
- S), while Grammatical-Relations(GR)-style parsers explicitly output relations together
with elements involved in the relation (e.g., subj(John,walk) explicitly indicates a subject
relation between John and walk).

We work in this paper in the realm of Treebank-style parsers, i.e., parsers producing
an output conforming to the Penn Treebank annotation guidelines 5. The Penn Treebank
project defined a tag set and bracketed form to represent syntactic trees that became a
standard for parsers developed/trained on Penn Treebank. It also produced a treebank, a
collection of hand-annotated texts with syntactic information, containing over one million
words of text taken from 1989 Wall Street Journal materials.

Given a sentence as input, Penn Treebank-style parsers output parse trees. Examples of
such parse trees are shown in Figure 1 for the sentence Mr. Hahn rose swiftly through the
ranks.b The most successful Treebank-style parsers are based on statistical models 6,7,8.
They use Penn Treebank to derive the parameters of the models. These parsers focus on
identifying the major phrases in a sentence such as NP, VP or S, although Penn Treebank

aNational Institute of Standards and Technology - Question Answering Track
bThis sentence is from Wall Street Journal portion of Penn Treebank.

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

Large Scale Experiments with Naive Bayes and Decision Trees for Function Tagging 3

NNP NNP VBD

RB IN

DT NNS

NP VP

PP

NP

ADVP

S

NNP

Mr.

NNP VBD

RB IN

PP-DIR

DT NNS

NP-SBJ VP

NP

ADVP-MNR

S

Hahn rose swiftly through the ranks

Input Tree Output Tree

Mr. Hahn rose swiftly through the ranks

Fig. 1. Examples of syntactic parse trees with (left) and without (right) function tags

contains annotations for other types of information such as function tags and traces c. Func-
tion tags have been added in Penn Treebank to augment the syntactic and semantic roles
for the nonterminal labels. These tags are necessary to distinguish words or phrases that
belong to one syntactic category and are used for some other function or when it plays
a role that is not easily identified without special annotation. The current state-of-the-art
parsers usually ignore the extra information,i.e. function tags and traces, available in Penn
Treebank in order to make the estimation of the parameters of their underlying statistical
models more reliable. This paper presents a method to augment the output of Treebank-
style syntactic parsers with functional information in the form of function tags. We build
functional taggers that can be used with a state-of-the-art syntactic parser to produce parse
trees with richer syntactic information.

The paper describes two techniques, one based on naive Bayes and another based on
decision trees, to assign function tags to nodes in parse trees. The function tags assignment
problem is viewed as a classification problem, where the task is to find for a given node in
a parse tree the correct function tag/class from a list of candidate tags/classes. Classifiers
assign a class from a predefined set of classes to an instance based on the values of attributes
used to describe the instance. For function tagging, each node in a parse tree corresponds to
an instance. We define a set of linguistically motivated attributes/features based on which
we characterize the instances. Instances are automatically generated from Penn Treebank
for each internal node. The instances are then used to derive naive Bayes and decision
trees classifiers as solutions to the function tags assignment problem. The paper presents a
systematic comparison of the two techniques based on evaluations conducted on a standard
data set. The two techniques use the same underlying model and same data set to derive
and test the classifiers, which allows for a fair comparison.

We chose naive-Bayes and decision trees for their simplicity and user-friendliness, re-
spectively. Naive-Bayes classifiers make strong assumptions about how the data is gener-
ated and use a probabilistic model that reflects these assumptions. They use a collection of

cTraces are remote dependencies between words that are far apart in a sentence such as the direct object relation-
ship between call and John in the following sentence: John is the person I called yesterday.

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

4 Mihai Lintean and Vasile Rus

labeled training examples to estimate the parameters of the generative model. Each training
example is described by a set of attributes, also called features, and the corresponding class
label. Classification of new examples is performed with Bayes’ rule by selecting the class
that is most likely to have generated the example. The naive Bayes classifier assumes that
all attributes of the examples are independent of each other given the context of the class.
This is the so-called naive Bayes assumption. This assumption is wrong in many real-world
tasks, yet naive Bayes classifiers often perform very well. This paradox is explained by the
fact that classification estimation is only a function of the sign (in binary cases) of the func-
tion estimation; the function approximation can still be poor while classification accuracy
remains high 9. Because of the independence assumption, the parameters for each attribute
can be learned separately, and this greatly simplifies learning, especially when the number
of attributes is large 10. Many studies have focused on the performance of the naive Bayes
classifiers: McCallum and Nigam10, Irina11, and more recently Zhang12 who proposes a
novel explanation for the apparently unreasonable efficacy of the naive Bayes classifiers.

Decision tree induction has been studied in detail both in the area of pattern recognition
and in the area of machine learning.13 In the vast literature concerning decision trees, also
known as classification trees or hierarchical classifiers, at least two seminal works must be
mentioned: Breiman et al.14 and Quinlan15. The former originated in the field of statistical
pattern recognition and describes a system, named CART (Classification And Regression
Trees), which was mainly applied to medical diagnosis and mass spectra classification. The
latter synthesizes the experience gained by people working in the area of machine learning
and describes a computer program, called ID3, which has evolved into a new system, named
C4.5 16. Decision trees are mainly used for classification purposes, but they are also helpful
in uncovering features of data that were previously unrecognizable to the eye. Thus, they
can be very useful in data mining activities as well as data classification. They work well
in many areas from typical business scenarios to airplane autopilots to medical diagnoses.
One major advantage of decision trees is their generation of a tree model that can be easily
interpreted by humans.

We present in this article the first large scale evaluation of decision trees based solu-
tions to the task of functional tagging. We used the full data set that Penn Treebank makes
available in order to train and test a decision trees based functional tagger. In Blaheta17 (see
section 5.2 Why we abandoned decision trees), the decision trees approach was abandoned
due to memory limitations. We addressed the memory issue by using a set of preprocessing
steps applied to training and test data and by using a High-Performance Computer (IBM
AIX System with 64GB of RAM). The preprocessing was necessary in order to reduce the
large number of distinct values some features/attributes have. Too many distinct values for
these features led to very large decision trees that would not fit even in the memory of the
High-Performance Computer.

The rest of the paper is organized in the following five sections. First, in the Related
Work section, we analyze previous efforts related to the task of function tags assignment
and to comparing naive Bayes and decision trees classifiers. The Problem section defines
the problem we addressed. Details on how we approached the problem are presented in
The Model section. The Experimental Setup and Results section presents the evaluation we

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

Large Scale Experiments with Naive Bayes and Decision Trees for Function Tagging 5

conducted on a standardized data set. The Conclusion and Future Work section ends the
paper.

2. Related Work

Previous work can be categorized in two groups: work related to the task of function tag
assignment and work related to comparing decision trees and naive Bayes classifiers. We
present an overview of each group, starting with the former.

Previous research to address the task of function tags assignment was mainly conducted
by Don Blaheta and Eugene Charniak 18,17. They used a statistical algorithm based on a
set of features grouped in trees, rather than chains. The advantage is that features can better
contribute to overall performance for cases when several features are sparse. When such
features are conditioned in a chain model the sparseness of a feature can have a dilution
effect of an ulterior (conditioned) one.

In Rus and Desai19, preliminary work on function tagging with a naive-Bayes approach
is reported. The major difference from our work is that they used different data preprocess-
ing steps. Our data preprocessing steps were developed to reduce the number of values of
certain features in our model. The reduction is necessary in order to generate decision trees
that can fit in the computational resources available. Also, Rus and Desai used a slightly
different set of features than ours.

There were other notable efforts related to function tags. Michael Collins6 used func-
tion tags to define certain constituents as complements. The technique was used to train
an improved syntactic parser. Also, there were attempts to enrich the output of syntactic
parsers with additional information available in Penn Treebank, such as syntactic relations
among empty nodes and their antecedents 20,21.

Before Blaheta18 there were no previous attempts to recover function tags from Penn
Treebank. However, there were several projects whose goal was to annotate grammatical
functions and syntactic categories22 or semantic roles of word phrases23. The grammatical
functions used by Brants et al.22 are similar to function tags. The set of tags is different from
the Penn Treebank set because the target language is German. Semantic roles23 indicate
roles, e.g. agent, played by various phrases in a sentence. We discuss below in more detail
the two projects that focused on grammatical functions and semantic tagging.

Brants et al.22 studied the problem of grammatical function tagging on the NEGRA
corpus. Like Penn Treebank, the NEGRA corpus is a syntactically annotated corpus of
german newspapers texts. The latest version of NEGRA, version 2, contains over twenty
thousand manually parsed sentences. The most important difference from Penn Treebank
is that the NEGRA corpus has a grammatical function tag on every node in the syntactic
tree, except the root node. Brants and colleagues developed a system to tag the NEGRA
corpus using Markov models. The system is an annotation tool, which provides partial or
complete parses of the text, and an intuitive graphical interface to assist annotators to verify
and correct the parsed texts.

The FrameNet23 project assigns semantic roles to phrases in a sentence. The function
tags correspond here to the so-called ”frame elements”, which are subelements of some

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

6 Mihai Lintean and Vasile Rus

predefined semantic frame. Typically each sense of a polysemous word belongs to a dif-
ferent semantic frame, a script-like conceptual structure that describes a particular type of
situation, object, or event along with its participants and props (tools). For example the
Apply-heat frame describes a common situation involving a COOK, some FOOD, and a
HEATING-INSTRUMENT, and is evoked by words such as bake, blanch, boil, broil, sim-
mer, steam, etc.23 The number of possible semantic roles, as defined in FrameNet, is very
large. Gildea and Jurafsky24 developed a system to identify these semantic roles in the
FrameNet corpus. They have constructed a mapping from the frame element tags into a
more abstract set of eighteen thematic roles, which resemble function tags.

The other major group of prior work is about comparing naive Bayes and decision trees.
There were many empirical comparisons between the naive Bayes and decision trees clas-
sifiers, which showed that both models predict equally well (Langley, Iba and Thomas25;
Kononenko26; Pazzani27). However, there is no previous work, to our knowledge, that at-
tempted to systematically compare naive Bayes or decision trees approaches to the task of
function tagging.

We present in this paper a common framework to address the problem of function tag-
ging and report how naive Bayes and decision trees perform within this framework. The
framework is defined by a common underlying model and a common set of data prepro-
cessing steps. The model and the preprocessing steps are described later.

3. The Problem

The task of function tagging is to add extra labels, called function tags, to certain nodes in
a parse tree. As an illustrative example we use the sentence Mr. Hahn rose swiftly through
the ranks. A state-of-the-art Treebank-style syntactic parser would generate the parse tree
shown on the left hand side in Figure 1. Each word in the sentence has a corresponding
leaf (terminal) node, representing that word’s part of speech. For instance, the word ranks
has NNS as its part of speech (NNS indicates a common noun in plural form). All the other
nodes, called internal or non-terminal nodes, will be labeled with a syntactic tag that marks
the grammatical phrase corresponding to the node, such as NP, VP, or S.

It is not obvious from such syntactic parse trees which node plays the role/function of
logical subject. A user of these parse trees needs to develop extra procedures to detect roles
played by various words or phrases. The task of function tagging, the problem addressed
in this paper, is to add labels, i.e. function tags, to phrases that explicitly indicate the roles
played by the phrases.

Function tags have been added in Penn Treebank5 to augment the syntactic and se-
mantic roles for the nonterminal labels. These tags are necessary to distinguish words or
phrases that belong to one syntactic category and are used for some other function or when
it plays a role that is not easily identified without special annotation. In Table 1 we give
a complete list of the function tags, along with the percentage that they appear within all
the nonterminal nodes in the current Penn Treebank corpus. Next, we briefly introduce the

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

Large Scale Experiments with Naive Bayes and Decision Trees for Function Tagging 7

most important function tags. The SBJ tag marks the subject phrase of every S or SINV d

node. It is by far the most common function tag. On the other hand, the logical subject of a
passive sentence is labeled with the LGS tag. The PRD function tag marks any predicative
construction that is not a verb phrase, for example the noun and adjective phrases of be (e.g.
This is an old story). Another common tag is the TMP tag and it marks the temporal
constituents, which are phrases that answer questions such as when?, how long? or how
often? Other tags are DIR, prepositional phrases that answer the questions from where?
and to where?; MNR, which is used for phrases that indicate the manner in which some
action was performed; LOC, a common tag used to mark phrases that denote the place
where something takes place; and PRP, which marks phrases that annotate the purpose of
or reason for an action. Some tags are very rare, such as BNF (Benefactive), CLF (It-cleft)
or VOC (Vocative). The CLR tag is a special tag, which was treated differently by Blaheta
in his study17. CLR stands for ”closely related” and marks constituents that occupy some
middle ground between argument and adjunct of the verb phrase 5. This tag was omitted in
Blaheta’s reported results because they found out that the tag’s original purpose was just to
”relieve annotator frustration” and it should have been removed in the final version of the
corpus. However, because the tag is present in the corpus, we decided to keep the tag in our
tests and treat it the same as the other tags.

Table 1. Penn Treebank Function Tags

Label Name Coverage Label Name Coverage

ADV Non-specific adverbial 0.76% MNR Manner 0.41%
BNF Benefactive 0.00% NOM Nominal 0.48%
CLF It-cleft 0.00% PRD Predicate 2.24%
CLR Closely related 0.98% PRP Purpose 0.39%
DIR Direction 0.45% PUT Locative complement of ’put’ 0.04%
DTV Dative 0.06% SBJ Subject 8.62%
EXT Extent 0.19% TMP Temporal 2.73%
HLN Headline 0.04% TPC Topic 0.44%
LGS Logical subject 0.36% TTL Title 0.08%
LOC Location 2.16% VOC Vocative 0.01%

To sum up, the task of function tags assignment is to generate a parse tree that has
function tags attached to certain nodes in the parse tree. The task is to generate a parse tree,
similar to the one on the right hand side in Figure 1, from an input parse tree that has no
function tags, such as the parse tree on the left hand side in the figure. The tree on the right
hand side has three functional tags: SBJ attached to the node NP, MNR attached to ADVP
(Adverbial Phrase), and DIR attached to PP (Prepositional Phrase).

dSINV - Inverted declarative sentence, i.e. one in which the subject follows the tensed verb or modal.

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

8 Mihai Lintean and Vasile Rus

VBD

RB IN

VP(rose-VBD)

PPADVP-MNR

S(rose-VBD)

rose swiftly through

(3 children total)

(3 children total)

Left sibling label Right sibling label

Parent’s label

Parent’s head’s pos

Head’s pos

Label

Grandparent’s head’s pos

Parent’s head word

Head word

Fig. 2. Example of a Treebank Node and its Features

4. The Model

We model the problem of assigning function tags as a classification problem. Classifiers are
methods that assign a class from a predefined set of classes to an instance based on the val-
ues of attributes used to describe the instance. We define a set of linguistically motivated
attributes/features based on which we characterize the instances. Instances are automati-
cally generated from Penn Treebank. The instances are then used to derive naive Bayes and
decision trees classifiers as solutions to the function tags assignment problem.

We describe below the set of features and classes we used to build the classifiers.
Features. We used a set of features inspired from Blaheta and Charniak18 that includes

the following features associated with a nonterminal node: label, parent’s label, right sibling
label, left sibling label, head word, parent’s head word, head’s pos (part-of-speech), parent’s
head’s pos, grandparent’s head’s pos. In Figure 2, we show these features for the ADVP
node marked with a circle. The function tag of this node is MNR, which means that the
adverbial phrase represented by the node indicates the manner of the action represented by
the parent verb phrase.

The meaning of the first four features listed above is self explanatory. To explain the
rest of the features we must define what a head word is. The head word of a phrase is the
most important word in the phrase. There is a set of deterministic rules to detect the head
word of a phrase (see Magerman28 and Collins29). They are simply called the head rules.
An example of a head rule is the following: the head word of a noun phrase is its rightmost
noun e. For instance, the noun phrase goat cheese has cheese as its head. To find the head
word for a phrase, corresponding to a node in a parse tree, we used the head rules, with a
slight modification described below. The head words for each node are recursively found
in the tree starting from bottom to top. The head word of an internal node in the parse
tree is the head word of one of its children. The child is chosen based on the head rules.
If the chosen child node is terminal, then the word in the terminal node becomes the head

eThis rule applies to non-recursive noun phrases. A non-recursive noun phrase is a noun phrase that does not
contain another noun phrase as one of its children.

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

Large Scale Experiments with Naive Bayes and Decision Trees for Function Tagging 9

word. If the child is an internal node, then it will have a head word already assigned. This
node becomes the head word of the current phrase. The head word and parent’s head word
features in our model are represented by the head words assigned to the current node and
the parent’s node, respectively.

The head’s pos mentioned in the description of the last three features is nothing else
than the part of speech tag of the head word. This is stored in the label of the terminal node
associated with the head word.

The only change we made to the head word rules was due to the alternative head
feature mentioned by Blaheta17. This feature is only valid for prepositional phrases that are
the head of a prepositional object. We did not use the alternative head’s pos and alternative
head as explicit features but rather modified the head word rules so that the same effect is
captured in the head’s pos and head word features.

Classes. The set of classes we used in our model corresponds to the set of function
tags in Penn Treebank. In the annotation guidelines for Treebank II 5, the 20 function tags
listed in the previous section are grouped in four categories: form/function discrepancies,
grammatical role, adverbials, and miscellaneous. Up to 4 function tags can be added to the
standard syntactic label (NP, VP, S, etc.) of each node. For instance, a node can have a
composed tag such as NP-LGS-TPC to indicate a noun phrase (NP) that has attached to it
two function tags, logical subject (LGS) and topicalisation (TPC).

Table 2. Categories of Function Tags.

Category Function Tags

Grammatical DTV, LGS, PRD, PUT, SBJ, VOC
Form/Function NOM, ADV, BNF, DIR, EXT, LOC, MNR, PRP, TMP
Topicalisation TPC
Miscellaneous CLR, CLF, HLN, TTL

We rearranged the four categories into four new categories based on corpus evidence,
similar to Blaheta and Charniak18. The new four categories are given in Table 2 and were
derived so that no two labels from same new category can be attached to the same node in
a parse tree.

The above features and classes are used to derive naive Bayes and decision trees classi-
fiers. This common underlying model allows for a crisp comparison of the two techniques
for the task of assigning function tags. The next section describes the experiments we con-
ducted to derive and evaluate the classifiers.

5. Experimental Setup And Results

We trained the classifiers on sections 1-21 from Wall Street Journal (WSJ) corpus of Penn
Treebank and used section 23 from the same corpus to evaluate the generated classifiers.
This split is standard in the syntactic parsing community7. The evaluation follows a gold
standard approach in which the output of classifiers is automatically compared with the
correct values, also called gold values.

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

10 Mihai Lintean and Vasile Rus

The performance measures reported are accuracy and kappa statistic. The accuracy is
defined as the number of correctly tagged instances divided by the number of attempted
instances. Kappa statistic31 measures the agreement between predicted and actual/gold
classes, while correcting for agreement that occurs by chance. Kappa can have values be-
tween -1 and 1 with values greater than 0.60 indicating substantial agreement and values
greater than 0.80 showing almost perfect agreement (see WolframMathworld30 for more
details).

The evaluation measures that we report here are different from the ones reported by
Blaheta18 (they used precision, recall and f-measure) and thus a direct comparison is not
possible. In Blaheta and Charniak18, because they considered both nodes with and without
function tags using precision and recall made more sense. Our experimental setup is differ-
ent. Due to a large number of nodes with no function tags (∼90%), we conducted two types
of experiments. In the first type of experiments, we considered only nodes with function
tags to get a better idea of how well naive Bayes and decision trees are at detecting true
function tags. In this case, using recall and precision would not have made sense because
there are no instances with no function tag. We could have used some form of precision
and recall but the resulting figures would have not been comparable anyway with Blaheta
and Charniak’s. For the second type of experiments, we considered nodes with and without
function tags, similar to Blaheta and Charniak. Here, using the precision and recall mea-
sures would have made more sense, but we chose to keep the measures we used in our
initial set of experiments for consistency and comparison purposes. In a quick analysis, the
figures reported in Blaheta18 are close to our results for similar experiments.f

Another reason for which a direct comparison between the work presented in this paper
and Blaheta’s work is not possible is because Blaheta17 was not able to report full results on
decision trees due to memory limitations. Blaheta explains why they have abandoned deci-
sion trees, although ”improving the performance of the decision trees was unquestionably a
valid possible research direction”17 (page 32). Conversely, we do report here performance
figures on decision trees. As stated earlier, we present the first large scale experiments with
decision trees for the task of function tagging.

Furthermore, a direct comparison is not possible because our data instances for both
training and testing were obtained from perfect parse trees in Treebank, while in Blaheta
and Charniak18 they parsed the test data using a state-of-the-art parser and considered only
correct constituents in the output when reporting per-category results of the function tags
assignment classifier.

A direct comparison with Rus and Desai19 for naive Bayes is also not possible because
they used different data preprocessing steps and a slightly different set of features.

To build the classifiers, we used the implementations of naive Bayes and decision trees

fThe performance figures we used to compare the results are the reported with-null accuracy from Blaheta and
Charniak and the accuracy reported in our last experiment. As another indication that a direct comparison is
not possible are the baseline results. The baseline figures are slightly different in this article from Blaheta and
Charniak’s although we use the same baseline of guessing the most frequent function tag. The slight difference
can be explained by the differences in the data preprocessing steps.

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

Large Scale Experiments with Naive Bayes and Decision Trees for Function Tagging 11

in WEKA. WEKA31 (Waikato Environment for Knowledge Analysis) is a comprehensive,
open-source (GPL) machine learning and data mining toolkit written in Java. We have
chosen WEKA because it offers the same environment for naive Bayes and decision trees,
and thus the comparison would be more reliable. WEKA requires a great deal of memory to
build the models from large training sets, especially for decision trees. A regular machine
with 2GB of memory is not sufficient even after applying the data preprocessing steps
aimed at reducing the size of the data set (see details below about data preprocessing). We
used instead an AIX High Performance Computer (HPC) system with 64GB of RAM.

5.1. Data Collection

Before we build naive Bayes or decision trees based classifiers, there is need to collect
training data. The training data is a set of problem instances. Each instance consists of
values for each of the defined features of the underlying model and the corresponding class,
i.e. function tag. The values of the features and class are automatically extracted from Penn
Treebank parse trees by simply traversing the trees and for each node extracting values for
the defined features. When considering also the nodes that are not labeled with function
tags, then a default class (called NON-F) is assigned to those nodes. Only internal nodes
from parse trees are considered because only these nodes can be labeled with a function tag.
In general, if the data preprocessing is done well, a good predictive model would correctly
classify instances of terminal or root nodes because these nodes are clearly associated with
one class. For instance, the terminal (leaf) nodes in our problem belong to the NON-F class.
However, the purpose of the predictive models is to correctly label the hard examples. This
is one reason why we filtered out some of the nodes in the trees.

We collected two sets of training data, one for each type of experiment we conducted.
First type of experiments. For the first type of experiments, we only processed nodes

with function tags, ignoring nodes unlabeled with such tags in Penn Treebank. This allowed
for a more detailed comparison of the two approaches, naive Bayes and decision trees, on
nodes with true function tags. Nodes without function tags greatly outnumber those with.
The bottom line is that including the no-function-tag nodes would lead to a less clear picture
of how well the two approaches could detect true function tags.

Because a node can have several function tags there are two possible setups for our
classification task. We can define a class as a composed tag of all possible combinations
of function tags that can be assigned to a node. A single classifier is generated in this case
that would assign one composed tag to a node, i.e. one or more individual function tags at
once. Alternatively, we can try to build four separate classifiers, one for each of the four
functional tags categories. Based on the fact that no node can have more that one tag from a
given category, each classifier will be used to predict a function tag from the corresponding
category.

Second type of experiments. For the second type of experiments, both nodes with and
without function tags are considered to generate training instances. We could use the same
setups as in the first type of experiments: single classifier to predict composed tags versus
four classifier, one for each category of function tags. The setup in which we would gener-

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

12 Mihai Lintean and Vasile Rus

ate a single classifier for all function tag categories is not possible anymore. This challenge
arises from two sources, which are related. First, nodes without function tags greatly out-
number nodes with function tags. The number of the training instances is much bigger.
Second, there is a large number of distinct values for some of the features in the model.
The problematic features are the head word based features. Due to lexical diversity, these
features have tens of thousands of distinct values leading to extremely large decision trees.
These decision trees are too large to fit in the memory of conventional or more powerful
computers such as the High-Performance Computer we used in our experiments. The sec-
ond setup in which we build four classifiers, one for each function tag category, greatly
reduces the number of distinct values for the problematic features. Creating decision trees
that handle nodes labeled with the newly introduced NON-F function tag, becomes possi-
ble.

In summary, we conducted the following three experiments:

(1) each training instance is assigned a composed tag, similar to Penn Treebank annota-
tions; only nodes with function tags in Treebank are used to generate training instances;
a single classifier is induced;

(2) each training instance is assigned a single function tag from one of the four function
tags categories; only nodes labeled with function tags in Treebank are used to generate
training instances; four classifiers are induced;

(3) each instance is assigned a single function tag from one of the four function tags cat-
egories; all the nodes, with and without function tags, in Penn Treebank are used to
generate training instances; four classifiers are induced.

While the first experiment above is simpler, the last two experiments are similar to what a
Treebank annotator would do, i.e. assigning a tag from one of the four categories at a time.

Data Preprocessing. Some simplifications were necessary to make the task feasible.
First, punctuation was mapped to a unique token PUNCT and traces in parse trees replaced
with TRACE. Second, we handled features with a large number of distinct values. Two head
features, head word and parent’s head word, have a great deal of distinct values, i.e. distinct
words. There is need to further process the data to reduce the lexical diversity problem. We
tried different transformations for reducing the number of possible values for head words
based features. We applied lexical and morphological transformations, e.g. stemming and
grouping some of the words in lexical categories. The full set of applied transformations
are given below.

(1) Replace all the words that represent family, female or male names with labels indicating
the following three generic classes: Family Name, Male Name and Female Name. We
used three dictionaries to categorize proper nouns into one of the tree classes.

(2) Replace words denoting numbers, identified by the part of speech label CD, with the
following class labels: Number, Fraction (e.g. 3/4), Time (e.g. 10:30) and Date Period
(e.g. 1987-1995).

(3) Change everything to lower case. This is to prevent differences between words that are
at the beginning of sentences and same words appearing somewhere in the middle of a

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

Large Scale Experiments with Naive Bayes and Decision Trees for Function Tagging 13

sentence.
(4) Replace numbers from complex words that are composed of a number and a word. For

example words like 10%-used, 80%-controlled or mid-1987, were changed to Percent-
used, Percent-controlled, and mid-YearPeriod.

(5) Eliminate special characters (dot or comma) from the words, because they are used as
special characters by the classification program.

(6) Stem all the words, i.e. reduce all morphological variations of a word to the base form
of the word. For instance, both go and went would be mapped to go. To stem the words
we have used the Porter Stemmer’s algorithm32. This stemmer is widely used in the
information retrieval field. It is the de-facto standard algorithm for stemming English
texts.

Table 3 shows the number of unique values for head words after applying the above
transformations to the set of head words in Penn Treebank. We counted the distinct values
for the head word and parent’s head word features. The rows correspond to the transfor-
mations listed above, when they are gradually applied to the two sets of head words. We
show numbers for the two types of experiments described earlier, that is when we consider
only the nodes with function tags, or when we test all the internal nodes. The distinct values
were counted from both the training and the test data.

Table 3. Number of distinct values for the head words.

Type of Transformation Only nodes with function tags All internal nodes
Head Parent’s Head Head Parent’s Head

Untransformed 19731 14794 27374 23156
Step 1 - Names 18380 14056 25819 21811
Step 2 - Numbers 17552 13728 24376 20776
Step 3 - Lowercase 15581 12767 21631 18788
Step 4 - Numbers in words 15562 12756 21604 18761
Step 5 - Special Characters 15510 12733 21519 18717
Step 6 - Final-Set 11430 8402 14975 12836

Because by applying this set of transformations a property regarding the similarity be-
tween the parent’s head and head features might be lost, we added a new feature to the set
of features in our model. The new feature has a Boolean value that indicates if the parent’s
head is the same with the current node’s head. In our experiments, we noticed that this new
feature slightly improves the performance of the classifiers.

5.2. Results

The results of our three experiments are shown in Tables 4, 5, and 6. Table 4 shows the
results for the first experiment in which we used as classes composed tags. A single clas-
sifier is generated from the training data. The top half of the table presents the results for
the naive Bayes classifier. The bottom half shows the decision trees based results. For each
classifier, the row labeled All Categories gives the overall performance figures as reported

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

14 Mihai Lintean and Vasile Rus

by WEKA. The other rows, one for each function tags category, show figures for the perfor-
mance of the classifiers for tags belonging to that category. We computed the per category
figures by simply breaking the predicted composed tags into individual tags and checked if
there was a matching individual tag in the correct composed tag. For instance, if the clas-
sifier predicted LGS-DIR-TPC and the correct composed tag is LGS-TMP-DIR then only
the LGS and TPC individual tags that correspond to the Grammatical and Form/Function
categories are hits. The Kappa statistic is reported only for the All Categories row since
WEKA only reports it for the entire data set.

Table 4. Performance of Naive Bayes and Decision Trees (Experiment 1).

Category Training Data Test Data
Instances Errors Accuracy # Instances Errors Accuracy

Naive Bayes Kappa statistic = 0.8206 Kappa statistic = 0.8080

All Categories 202311 26655 86.82% 11634 1644 85.87%
Grammatical 118483 3788 96.80% 6907 279 95.96%
Form/Function 66261 17940 72.92% 3902 1109 71.58%
Topicalisation 3715 131 96.47% 261 14 94.64%
Miscellaneous 16630 3966 76.15% 759 187 75.36%

Decision Trees Kappa statistic = 0.8751 Kappa statistic = 0.8301

All Categories 202311 18472 90.87% 11634 1444 87.59%
Grammatical 118483 2007 98.31% 6907 187 97.29%
Form/Function 66261 12689 80.85% 3902 1019 73.88%
Topicalisation 3715 180 95.15% 261 16 93.87%
Miscellaneous 16630 3911 76.48% 759 268 64.69%

Table 5 shows the results for the second experiment. In this experiment, we divided the
training and test data per category of function tags. Each instance has an associated class
in the form of an individual function tag. An instance from Treebank that has a composed
tag such as LGS-TMP would lead to one instance for the Grammatical and Function/Form
categories each. We generated four different classifiers, one for each category.

In Table 6, we show the results for the third experiment. The layout of this table is differ-
ent from the previous tables for several reasons. First, the training data set used in this case
is much larger than what we used in the previous experiments. Computing performance
figures for this large training data set was too expensive. Thus, we report performance fig-
ures only for the test data. Second, because we are now using all the nodes in the syntactic
trees, with and without function tags, the number of instances is the same in all of the four
categories. There were a total of 827,193 instances used in the training data set, and 47,333
instances for the test data set. The first column in the table, called F-Tags, represents the
number of instances that have a function tag from the category indicated by the correspond-
ing row in the table. If we subtract this figure from the total number of instances, we find
the number of instances which are treated as NON-F cases. The percentage of the NON-F
instances is reported in the second column. We call this the Baseline column because it
indicates the performance for a baseline classifier, which would simply label all instances

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

Large Scale Experiments with Naive Bayes and Decision Trees for Function Tagging 15

Table 5. Performance of Naive Bayes and Decision Trees (Experiment 2).

Category Training Data Test Data
Instances Errors Accuracy Kappa # Instances Errors Accuracy Kappa

Naive Bayes

Grammatical 118483 546 99.54% 0.9841 6907 69 99.00% 0.9680
Form/Function 66261 13083 80.25% 0.7516 3902 798 79.55% 0.7366
Topicalisation 3751 0 100.00% 1.0000 261 0 100.00% 1.0000
Miscellaneous 16630 132 99.21% 0.9326 759 3 99.60% 0.9856

Decision Trees

Grammatical 118483 421 99.64% 0.9877 6907 21 99.70% 0.9901
Form/Function 66261 8929 86.52% 0.8271 3902 639 83.62% 0.7841
Topicalisation 3751 0 100.00% 1.0000 261 0 100.00% 1.0000
Miscellaneous 16630 95 99.43% 0.9494 755 4 99.47% 0.9807

with the most frequent class, the NON-F class. The next columns indicate the number of
errors, the classifier performance, and the kappa statistic for the naive Bayes and decision
trees classifiers.

Table 6. Performance of Naive Bayes and Decision Trees (Experiment 3).

Category Naive Bayes Decision Trees
F-Tags Baseline Errors Accuracy Kappa Errors Accuracy Kappa

Grammatical 6907 86.41% 2120 95.52% 0.8357 729 98.46% 0.9370
Form/Function 3902 91.76% 4723 90.02% 0.5058 2294 95.15% 0.6405
Topicalisation 261 99.45% 185 99.61% 0.7139 61 99.87% 0.8849
Miscellaneous 759 98.40% 2356 95.02% 0.3093 692 98.54% 0.3318

From the tables we notice high values for Kappa which suggest that both naive Bayes
and decision trees offer predictions that are in high agreement with the true, gold values.
We also see that the Form/Function category has considerably lower performance values
than the other categories. This is mainly because there are more classes/function tags that
can be predicted and because of the complex nature of some of the tags (e.g. PRP), which
makes them harder to predict.

While the performance figures for naive Bayes and decision trees are close to each
other, decision trees based results are better for most of the function tags categories and
types of experiments. One explanation why decision trees outperformed naive Bayes is
that decision trees are more complex predictive models than naive Bayes. Nevertheless,
their greater predicting power comes at the expense of more resources, mainly memory.
This was the main issue that drove us to use the High Performance Computer system in
our experiments. Blaheta17 attempted to use decision trees on regular machines but gave
up due to memory limitations. Thus, our experiments reported in this paper are the first
successful large scale experiments with decision trees for function tagging.

The few cases where naive Bayes outperformed decision trees on the test data are the

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

16 Mihai Lintean and Vasile Rus

topicalisation and miscellaneous categories in experiments 1 and 2. This is because of the
sparseness of instances for the two categories in the data set and the overtraining of the
decision trees classifiers.

6. Conclusion and Future Work

We presented in this paper a comparison of naive Bayes and decision trees techniques for
the task of assigning function tags. The results reported are on perfectly parsed trees from
the Penn Treebank corpus. Our experiments show that the two techniques deliver good
performance. Although decision trees outperformed the naive Bayes approach, there is a
trade-off in the amount of needed resources. Decision trees are more complex and require
more resources, such as memory and processing time, than naive Bayes.

As future work, we plan to define more features for the underlying model. In addition,
we plan to experiment with feature selection algorithms to find the best subset of features
that deliver the best performance. We also plan to integrate function tagging in a state-of-
the-art syntactic parser to provide full parsing for a given sentence. Such a full parser could
be applied to real world tasks such as Question Answering.

References
1. S. Lappin and H. J. Leass, An algorithm for pronominal anaphora resolution, Computational

Linguistics, (1994), 20(4):535–561.
2. E. Charniak, K.Knight and K. Yamada, Syntax-based language models for statistical machine

translation, in Proceedings of Machine Translation Summit IX, (2003).
3. E. M. Voorhees, Overview of the trec 2002 question answering track, in Proceedings of the

Eleventh Text Retrieval Conference, (2002).
4. Moldovan, D., Harabagiu, S., Pasca, M., Mihalcea, R., Girju, R., Goodrum, R., Rus, V. The Struc-

ture and Performance of an Open-Domain Question Answering System, in Proceedings of ACL
2000, Hong Kong, October, 2000.

5. A. Bies, M. Fergurson, K. Katz and R. MacIntyre, Bracketing guidelines for treebank II style,
(Penn Treebank Project, 1995).

6. M. Collins, Three generative, lexicalised models for statistical parsing, in Proc. 35th Annual Meet-
ing of the Association for Computational Linguistics and Eight Conference of the European Chap-
ter of the Association for Computational Linguistics, (1997).

7. E. Charniak, A maximum-entropy-inspired parser, in Proc. of North American Chapter of Asso-
ciation for Computational Linguistics, (NAACL-2000).

8. D. Klein and C. Manning, Accurate Unlexicalized Parsing. Proceedings of the 41st Annual Meet-
ing of the Association for Computational Linguistics, Sapporo, Japan, (2003).

9. J. Friedman, On bias, variance, 0/1 - loss, and the curse-of-dimensionality, Data Mining and
Knowledge Discovery, (1997), 1(1):55–77.

10. A. McCallum and K. Nigam, A comparison of event models for naive bayes text classification,
Workshop on Learning for Text Categorization, (AAAI, 1998).

11. R. Irina, An empirical study of the naive Bayes classifier, in Workshop on Empirical Methods in
Artificial Intelligence, (IJCAI, 2001).

12. H. Zhang, The Optimality of Naive Bayes, in Proceeding of FLAIRS, (2004).
13. F. Esposito, D. Malerba and G. Semeraro, A Comparative Analysis of Methods for Prunning

Decision Trees, in Transactions on Pattern Analysis And Machine Intelligence, (IEEE,1997),
19(5):476–491.

December 1, 2007 13:25 WSPC/INSTRUCTION FILE LinteanM˙RusV˙IJAIT-
ML

Large Scale Experiments with Naive Bayes and Decision Trees for Function Tagging 17

14. L. Breiman, J. Friedman, R. Olshen and C. Stone, Classification and Regression Trees,
(Wadsworth,1984).

15. J. R. Quinlan, Induction of decision trees, Machine Learning, (1986), 1(1):81–106.
16. J. R. Quinlan, C4.5: Programs for Machine Learning, (Morgan Kaufmann Publishers, 1993).
17. D. Blaheta, Function tagging, advisor E. Charniak, (Ph.D. Dissertation, Brown University,

2003).
18. D. Blaheta and E. Charniak, Assigning function tags to parsed text, in Proc. 1st Annual Meeting

of the North American Chapter of the Association for Computational Linguistics, (2000), 234–240.
19. V. Rus and K. Desai, Assigning function tags with a simple model, in Proc. of Conference on

Intelligent Text Processing and Computational Linguistics, (CICLing, 2005).
20. M. Johnson, A simple pattern-matching algorithm for recovering empty nodes and their an-

tecedents, in Proc. 40th Annual Meeting of the Association for Computational Linguistics, (2002).
21. V. Jijkoun and M. De Rijke, Enriching the output of a parser using memory-based learning, in

Proceedings of the ACL 2004, (2004).
22. T. Brants, W. Skut, and B. Krenn, Tagging Grammatical Functions, in Proceedings of the Con-

ference on Empirical Methods in Natural Language Processing,(EMNLP, 1997).
23. J. Ruppenhofer, M. Ellsworth, M. Petruck, C. Johnson and J. Scheffczyk, FrameNet II: Ex-

tended Theory and Practice, International Computer Science Institute, (University of California at
Berkley, 2006).

24. D. Gildea and D. Jurafsky, Automatic labeling of semantic roles, Computational Linguistics,
(2002), 28(3):245–288.

25. P. Langley, W. Iba and K. Thomas, An analysis of Bayesian classifiers, in Proceedings of the
Tenth National Conference of Artificial Intelligence, (AAAI, 1992), p223–228.

26. I. Kononenko, Comparison of inductive and naive Bayesian learning approaches to automatic
knowledge acquisition, in Wielinga, B., ed., Current Trends in Knowledge Acquisition, (IOS Press.,
1990).

27. M. J. Pazzani, Search for dependencies in Bayesian classifiers, in Fisher, D., and Lenz, H. J.,
eds., Learning from Data: Artificial Intelligence and Statistics, (V. Springer Verlag, 1996).

28. D. Magerman, Natural Language Parsing as Statistical Pattern Recognition, (Ph.D. Dissertation,
Stanford University, 1994).

29. M. Collins, Head-Driven Statistical Models for Natural Language Parsing, (Ph.D. Thesis, Uni-
versity of Pennsylvania, 1999).

30. Eric W. Weisstein, k-Statistic, from MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/k-Statistic.html

31. I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edn. (Morgan Kaufmann Publishers, 2005).

32. M.F. Porter, An Algorithm for Suffix Stripping, in Program, (1980), 14(3):130–137.

