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Abstract

This paper describes the use of two machine learning tech-
niques, naive Bayes and decision trees, to address the task
of assigning function tags to nodes in a syntactic parse tree.
Function tags are extra functional information, such as log-
ical subject or predicate, that can be added to certain nodes
in syntactic parse trees. We model the function tags assign-
ment problem as a classification problem. Each function tag
is regarded as a class and the task is to find what class/tag a
given node in a parse tree belongs to from a set of predefined
classes/tags. The paper offers the first systematic comparison
of the two techniques, naive Bayes and decision trees, for the
task of function tags assignment. The comparison is based on
a standardized data set.

Introduction
Syntactic information is an important processing step to
many language processing applications such as Anaphora
Resolution, Machine Translation, and Question Answer-
ing. Syntactic parsing in its most general definition may
be viewed as discovering the underlying syntactic structure
of a sentence. The specificities include the types of ele-
ments and relations that are retrieved by the parsing pro-
cess and the way in which they are represented. For ex-
ample, Treebank-style parsers (Bieset al. 1995) retrieve a
hierarchical organization (tree) of smaller elements (called
phrases, e.g. noun phrases - NP, verb phrases - VP, sen-
tence - S), while Grammatical- Relations(GR)-style parsers
explicitly output relations together with elements involved
in the relation (e.g., subj(John,walk) explicitly indicates a
subject relation betweenJohn andwalk).

In this paper, we work in the realm of Treebank-style
parsers. Given a sentence as input, these parsers output parse
trees. Examples of such parse trees are shown in Figure 1 for
the sentenceMr. Hahn rose swiftly through the ranks. The
most successful Treebank-style parsers are based on statisti-
cal models. They use treebanks to derive the parameters of
the models. A treebank is a collection of English sentences
manually annotated with syntactic information by experts.
State-of-the-art statistical parsers are trained on Penn Tree-
bank (Bieset al. 1995) and focus on identifying the major
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phrases such as NP, VP, or S, although Penn Treebank con-
tains annotations for other types of information such func-
tion tags (e.g., subject or predicate) and traces1. The parsers
usually ignore the extra information in order to make the
estimation of the parameters of their underlying statistical
models more reliable. This paper presents a method to aug-
ment the output of Treebank-style syntactic parsers with
functional information in the form of function tags.

The paper describes two techniques, one based on naive-
Bayes and another based on decision trees, to assign func-
tion tags to nodes in parse trees. The function tags assign-
ment problem is viewed as a classification problem, where
the task is to find for a given node in a parse tree the cor-
rect tag/class from a list of candidate tags/classes. The pa-
per presents a systematic comparison of the two techniques
based on evaluations conducted on a standard data set. Fur-
ther, the two techniques use the same underlying model and
same set of data to derive the classifiers which allows for a
fair comparison.

We chose naive-Bayes and decision trees for their sim-
plicity and user-friendliness, respectively. Naive-Bayes
classifiers make strong assumptions about how the data is
generated, and use a probabilistic model that reflects these
assumptions. They use a collection of labeled training ex-
amples to estimate the parameters of the generative model.
Classification of new examples is performed with Bayes’
rule by selecting the class that is most likely to have gen-
erated the example. The naive Bayes classifier assumes that
all attributes of the examples are independent of each other
given the context of the class. This is the so-called “naive
Bayes assumption”. This assumption is wrong in many real-
world tasks, yet naive Bayes classifiers often perform very
well. This paradox is explained by the fact that classification
estimation is only a function of the sign (in binary cases) of
the function estimation; the function approximation can still
be poor while classification accuracy remains high (Fried-
man 1997). Because of the independence assumption, the
parameters for each attribute can be learned separately, and
this greatly simplifies learning, especially when the number
of attributes is large (McCallum & Nigam 1998).

1Traces are remote dependencies between words that are far
apart in a sentence such as the direct object relationship between
call andJohn in the following sentence: John is the person I called
yesterday
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Figure 1: A Simple Syntactic Tree

Decision tree induction in machine learning were largely
studied by Quinlan (Quinlan 1986). A computer program,
called ID3, implements decision tree induction algorithms.
ID3 has evolved into a new system, named C4.5 (Quinlan
1993). Decision trees are mainly used for classification pur-
poses, but they are also helpful in uncovering features of data
that were previously unrecognizable to the eye. Thus, they
can be very useful in data mining activities as well as data
classification. They work well in many different areas, from
typical business scenarios to airplane autopilots and medical
diagnoses. One major advantage of decision trees is their
generation of a tree model that can be easily interpreted by
humans.

The rest of the paper is organized as in the followings.
Next, in theRelated Work section, we analyze previous ef-
forts related to the task of function tags assignment.The
Problem section clearly defines the problem we address. De-
tails on how we approach the problem are presented in sec-
tion The Model. TheExperiments and Results section details
the evaluation we conducted on a standardized data set. The
Conclusion section ends the paper.

Related Work
Previous work to address the task of function tags assign-
ment is presented in (Blaheta & Johnson 2000). They use
a statistical algorithm based on a set of features grouped in
trees, rather thanchains. The advantage is that features can
better contribute to overall performance for cases when sev-
eral features are sparse. When such features are conditioned
in a chain model the sparseness of a feature can have a dilu-
tion effect of a ulterior (conditioned) one.

Previous to that, Michael Collins (Collins 1997) used
function tags to define certain constituents as complements.
The technique was used to train an improved parser.

Also, there were previous attempts to enrich the output
of syntactic parsers with additional information available in
Penn Treebank such as dependency information (Johnson

2002; Jijkoun & De Rijke 2004).
There is no previous work, to our knowledge, that at-

tempted to systematically compare naive Bayes or decision
trees approaches to the task of function tagging. In (Rus &
Desai 2005), preliminary work with a naive-Bayes approach
is reported. They use different data preprocessing steps
which makes it hard to directly compare with our work. Our
preprocessing steps were so developed to reduce the num-
ber of values of certain features in our model. The reduction
is necessary in order to generate decision trees that can fit
in the computational resources available. Too many values
for a feature would lead to numerous nodes corresponding
to that value in the decision tree, and thus to a large decision
tree.

We present in this paper a common framework to ad-
dress the problem of function tagging and report how naive
Bayes and decision trees perform within this framework.
The framework is defined by a common underlying model
and a common set of preprocessing steps. The model and
the preprocessing steps are described later.

The Problem
The task of function tagging is to add extra labels, called
function tags, to certain constituents in a parse tree. Let
us pick as an illustrative example the sentenceMr. Hahn
rose swiftly through the ranks. 2 A state-of-the-art syntactic
parser will generate the parse tree shown on the left hand
side in Figure 1. Each word in the sentence has a corre-
sponding leaf (terminal) node, representing that word’s part
of speech. For instance, the wordranks has NNS as its part
of speech (NNS indicates a common noun in plural form).
All the other nodes, called internal or non-terminal nodes,
will be labeled with a syntactic tag that marks the grammat-
ical phrase corresponding to the node, such as NP, VP, or
S.

2This sentence is from Wall Street Journal portion of Penn Tree-
bank.



Table 1: Categories of Function Tags

Category Function Tags

Grammatical DTV, LGS, PRD, PUT, SBJ, VOC
Form/Function NOM, ADV, BNF, DIR, EXT, LOC, MNR, PRP, TMP
Topicalisation TPC
Miscellaneous CLR, CLF, HLN, TTL

It is not obvious from such syntactic parse trees which
node plays the role/function of logical subject for instance.
An user of these parse trees needs to develop extra proce-
dures to detect the roles played by various words or phrases.
The task of function tagging, the problem addressed in this
paper, is to add function tags to nodes in a parse tree.

Technically, the task of function tags assignment is to gen-
erate a parse tree that has function tags attached to certain
nodes as shown on the right hand side in Figure 1, from an
input parse tree that has no function tags such as the one on
the left hand side in Figure 1.

The Model
We model the problem of assigning function tags as a classi-
fication problem. Classifiers are programs that assign a class
from a predefined set of classes to an instance based on the
values of attributes used to describe the instance. We de-
fine a set of linguistically motivated features based on which
we characterize the instances. We automatically generate
instances from Penn Treebank and then use them to derive
naive Bayes and decision trees classifiers as solutions to the
function tags assignment problem.

Let us analyze the set of features and classes we used to
build the classifiers.

We used a set of features inspired from (Blaheta & John-
son 2000) that includes the following: label, parent’s la-
bel, right sibling label, left sibling label, parent’s headpos,
head’s pos, grandparent’s head’s pos, parent’s head, head.
We did not use the alternative head’s pos and alternative
head (for prepositional phrases that would be the head of
the prepositional object) as explicit features but rather mod-
ified the phrase head rules so that the same effect is captured
in pos and head features, respectively.

The set of classes we used in our model corresponds to
the set of functional tags in Penn Treebank. In Section
2.2 of Bracketing Guidelines for Treebank II (Bieset al.
1995), there are 20 function tags grouped in four categories:
form/function discrepancies, grammatical role, adverbials,
and miscellaneous. Up to 4 function tags can be added to the
standard syntactic label (NP, VP, S, etc.) of each node. For
instance, a node can have a label such as NP-LGS-TPC to in-
dicate a noun phrase (NP) that has attached to it two function
tags, LGS (logical subject) and TPC (topicalisation). Those
tags were necessary to distinguish words or phrases that be-
long to one syntactic category and are used for some other
function or when it plays a role that is not easily identified
without special annotation. We rearrange the four categories

into four new categories based on corpus evidence, in a way
similar to (Blaheta & Johnson 2000). The new four cate-
gories are given in Table 1 and were derived so that no two
labels from same new category can be attached to the same
node.

The above features and classes are used to derive both
naive Bayes and decision trees classifiers. This common
underlying model allows for a crisp comparison of the two
techniques for the task of assigning function tags. The next
section describes the experiments we conducted to derive
and evaluate the classifiers.

Experimental Setup And Results
We trained the classifiers on sections 1-21 from Wall Street
Journal (WSJ) part of Penn Treebank and used section 23
to evaluate the generated classifiers. This split is standard in
the syntactic parsing community (Charniak 2000). The eval-
uation follows a gold standard approach in which the output
of classifiers is automatically compared with the correct val-
ues, also called gold data.

The performance measures reported are accuracy and
kappa statistic. Theaccuracy is defined as the number
of correctly tagged instances divided by the number of at-
tempted instances.Kappa statistic (Witten 2005) mea-
sures the agreement between predicted and actual/gold
classes, while correcting for agreement that occurs by
chance. Kappa can have values between -1 and 1 with
values greater than 0.60 indicating substantial agreement
and values greater than 0.80 showing almost perfect agree-
ment. More useful references about the k-statistic estima-
tor can be found online on the Wolfram Mathworld site
(http://mathworld.wolfram.com/k-Statistic.html).

Our evaluation is different from the one reported in (Bla-
heta & Johnson 2000) and thus a direct comparison is not
possible. In (Blaheta & Johnson 2000), they considered both
nodes with and without functional tags. Due to a large num-
ber of nodes with no function tags (∼90%), we only consid-
ered nodes with tags to get a better idea of how good naive
Bayes and decision trees are at detecting true function tags.
In a quick intuitive analysis, the figures reported in (Blaheta
& Johnson 2000) are close to our results for similar exper-
iments. However, the reader must note that (Blaheta 2003)
was not able to report full results on decision tree due to
memory limitations. We do report here performance figures
on decision trees. Further, we conducted two types of ex-
periments as opposed to a single type. Our data instances
for both training and testing were obtained from perfectly



Table 2: Number of distinct values for the head words

Type of transformation # Distinct values
Head Parent’s Head

Untransformed 19730 14793
Letters only 18742 14380

Letter case insensitive 16675 13373
Stemmed words 12489 9004

Final-Transformation-Set 11430 8402

parsed trees in Treebank while (Blaheta & Johnson 2000)
parse the test data using a state-of-the-art parser and con-
siders only correct constituents in the output when reporting
results of the functional tags assignment classifier.

To build the classifiers, we used the implementations of
naive Bayes and decision trees in WEKA. WEKA (Wit-
ten 2005) is a comprehensive, open-source (GPL) machine
learning and data mining toolkit written in Java. We have
chosen Weka because it offers the same environment for
naive Bayes and decision trees, and thus the comparison
would be more reliable. WEKA requires a lot of memory
to build the models from large training sets, especially for
decision trees. A regular machine with 2GB of memory is
not sufficient even after the preprocessing steps aimed at re-
ducing its size (see below details about preprocessing). We
have used an AIX High Performance Computer (HPC) sys-
tem with 64GB of RAM.

Data Collection

Before one can build naive Bayes or decision trees based
classifiers, one needs to collect training data. The training
data is a set of problem instances. Each instance consists
of values for each of the defined features of the underlying
model and the corresponding class, i.e. function tag in our
case. The values of the features and class are automatically
extracted from Penn Treebank parse trees by simply travers-
ing the trees and for each node with function tags extract
values for the defined features.

To generate the training data, we have considered only
nodes with functional tags, ignoring nodes unlabeled with
such tags. This will allow for a more detailed comparison
of the two approaches since nodes with no function tags are
significantly outnumbering the ones with function tags. In-
cluding the no-function-tag nodes would have led to a less
clear picture of how well the two approaches could detect
true function tags. We plan to address this issue of detecting
whether a node has functional tags or not in the future.

Since a node can have several tags there are two possible
setups for our classification task. We can define a class as a
composed tag of all possible combinations of function tags
that can be assigned to a node. A single classifier is gen-
erated in this case that would assign one composed tag to a
node, i.e. one or more individual functional tags at once. Al-
ternatively, we can try to build four separate classifiers, one
for each of the four functional categories described earlier

in the paper. Knowing that a node cannot have more that
one tag from a given category, each classifier will be used to
predict the functional tag from the corresponding category.
Hence, there are two types of experiments we conducted:
(1) each instance is assigned a composed tag from the set of
all joint-tags categories (2) each instance is assigned a tag
from each of four categories. While the first type is more
convenient, the second is similar to what Treebank does, i.e.
assigning tags from multiple categories.

Some simplifications were necessary to make the task fea-
sible: punctuation was mapped to an unique tag PUNCT and
traces were left unresolved and replaced with TRACE. Fur-
thermore, two features,parent’s head and head, have as
values the words that represent the head word for a given
node in the parsed tree. The head of a node in a syntac-
tic parse tree is the word that gives most of the meaning of
the phrase represented by that node. There is a set of deter-
ministic rules to detect the head word of syntactic phrases
(Magerman 1994). Due to lexical diversity, the two features
have a very large set of different values, i.e. words. That
would lead to a very large decision tree that cannot be han-
dled by regular computers.

We’ve tried different approaches for reducing the number
of possible values for head-words based on lexical and mor-
phological transformations, e.g. stemming, grouping some
of the words in lexical categories. The changes in number
of different values for various transformations are shown in
Table 2. The full set of applied transformations are given
below.

1. Replace all the words that represent family, female or
male names with labels indicating the following three
generic classes: Family Name, Male Name and Female
Name. We used three dictionaries to categorize proper
nouns into one of the tree classes.

2. Replace words denoting numbers, identified by the part of
speech label CD, with the following class labels: Number,
Fraction ( e.g. 3/4), Time (e.g. 10:30) and Date Period
(e.g. 1987-19995).

3. Change everything to lower case. This is to prevent dif-
ferences between words that are at the beginning of sen-
tences and same words appearing somewhere in the mid-
dle of a sentence.

4. Replace numbers from complex words that are com-
posed of a number and a word. For example words like



Table 3: Performance Measures on Naive Bayes and Decision Trees. Experiment 1.

Category Training Data Test Data
# Instances Errors Performance# Instances Errors Performance

Naive Bayes Kappa statistic = 0.8206 Kappa statistic = 0.8080

All Categories 202311 26655 86.82% 11634 1644 85.87%
Grammatical 118483 3788 96.80% 6907 279 95.96%
Form/Function 66261 17940 72.92% 3902 1109 71.58%
Topicalisation 3715 131 96.47% 261 14 94.64%
Miscellaneous 16630 3966 76.15% 759 187 75.36%

Decision Trees Kappa statistic = 0.8751 Kappa statistic = 0.8301

All Categories 202311 18472 90.87% 11634 1444 87.59%
Grammatical 118483 2007 98.31% 6907 187 97.29%
Form/Function 66261 12689 80.85% 3902 1019 73.88%
Topicalisation 3715 180 95.15% 261 16 93.87%
Miscellaneous 16630 3911 76.48% 759 268 64.69%

10%-used, 80%-controlledor mid-1987, were changed to
Percent-used, Percent-controlled andmid-YearPeriod.

5. Eliminate special characters (dot or comma) from the
words, because they are used as special characters by the
classification program.

6. Stem all the words, i.e. reduce all morphological varia-
tions of a word to the base form of the word. For instance,
bothgo andwent would be mapped togo.

Because by applying this set of transformations, a prop-
erty regarding the similarity between theparent’s head and
head features might be lost, we added a new feature to the
set of features presented at the beginning of this section. The
new feature is a Boolean value that shows if the parent’s
head is the same with the current node’s head. In our experi-
ments, we noticed that this new feature slightly improves the
performance of the classifiers.

Results
The results of our experiments are shown in Tables 3 and 4.
Table 3 shows the results for the first type of experiments in
which we used as classes composed tags. A single classi-
fiers is generated from the training data. The top half of the
table presents the results for naive Bayes. The bottom half
shows the decision trees results. For each half, the row la-
beledAll Categories gives the overall performance figures as
reported by WEKA. The other rows, one for each function
tags category, give figures for the performance of the classi-
fiers for tags belonging to that category. For this first type of
experiment we computed the per category figures by simply
breaking the predicted composed tags into individual tags
and check if there is a matching individual tag in the correct
composed tag. For instance, if the classifiers predictedLGS-
DIR-TPC and the correct composed tag isLGS-TMP-DIR
then only the LGS and TPC individual tags that correspond
to the Grammatical and Form/Function categories are hits.
The Kappa statistic is reported only for theAll Categories
row since WEKA only reports it for the entire data set.

Table 4 shows the results for the second type of exper-
iments. In these experiments, we divide the training and
test data per category of function tags. Each instance has
an associated class in the form of an individual function tag.
An instance from Treebank that has a composed tag such as
LGS-TMP would lead to one instance for the Grammatical
and Function/Form categories each. We thus generate four
different classifiers, one for each category.

From the tables we notice high values for Kappa which
suggest that both naive Bayes and decision trees offer pre-
dictions that are in high agreement with the true, gold val-
ues. We can also see that the Form/Function category has
considerably lower performance values than the other cat-
egories. This is mainly because there are more functional
tags that can be predicted; and also because of the complex
nature for some of these tags (e.g. TMP), which makes them
harder using our chosen set of features.

While the results are close for both naive Bayes and deci-
sion trees, decision trees based results are better for most
of the function tags categories and types of experiments.
The reason why decision trees outperformed naive Bayes,
which is somewhat expected, is that decision trees are more
complex predictive models than naive Bayes. Their greater
predicting power comes at the expense of more resources
needed, mainly memory. This was the main issue that drove
us to use the HPC system in our experiments. Blaheta (Bla-
heta 2003) attempted to use decision trees on regular ma-
chines but gave up due to memory limitations. Thus, our ex-
periments reported in this paper are the first successful large
scale experiments on functional tagging.

Conclusion

We presented in this paper a comparison of naive Bayes
and decision trees techniques for the task of assigning func-
tion tags. Our experiments show that the two techniques are
promising and offer high performance. The results reported
are on perfectly parsed trees from the Penn Treebank corpus.



Table 4: Performance Measures on Naive Bayes and Decision Trees. Experiment 2.

Category Training Data Test Data
# Instances Errors Perf Kappa# Instances Errors Perf Kappa

Naive Bayes

Grammatical 118483 546 99.54% 0.9841 6907 69 99.00% 0.9680
Form/Function 66261 13083 80.25% 0.7516 3902 798 79.55% 0.7366
Topicalisation 3751 0 100.00% 1.0000 261 0 100.00% 1.0000
Miscellaneous 16630 132 99.21% 0.9326 759 3 99.60% 0.9856

Decision Trees

Grammatical 118483 421 99.64% 0.9877 6907 21 99.70% 0.9901
Form/Function 66261 8929 86.52% 0.8271 3902 639 83.62% 0.7841
Topicalisation 3751 0 100.00% 1.0000 261 0 100.00% 1.0000
Miscellaneous 16630 95 99.43% 0.9494 755 4 99.47% 0.9807
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