Introduction	Lexical Methods	Word-Semantics	Dependencies	Kernel Based Methods	Conclusions	Appendix
0000000000						

Measuring Semantic Similarity: Representations and Methods

A Dissertation Presented for the Doctor of Philosophy Degree

Mihai C. Lintean

Department of Computer Science University of Memphis

Under the supervision of Dr. Vasile Rus Committee Members: Dr. Arthur Graesser, Dr. King-Ip Lin, Dr. Vinhthuy Phan

June 20, 2011

(日) (同) (三) (三)

1/45

Introduction 00000000000		Word-Semantics	Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
The Go	bal					

Addressing the challenging task of automatically assessing the semantic similarity of texts

Introduction 00000000000		Word-Semantics 000000	Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
The Pro	oblem					

- **Text A:** York had no problem with MTA's <u>insisting</u> the decision to shift funds had been within its legal rights.
- Text B: York had no problem with MTA's saying the decision to shift funds was within its powers.

Paraphrasing - a clear case of semantic similarity

Introduction 00000000000		Word-Semantics	Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
The Pro	oblem					

- **Text A:** York had no problem with MTA's <u>insisting</u> the decision to shift funds had been within its legal rights.
- Text B: York had no problem with MTA's saying the decision to shift funds was within its powers.

Paraphrasing - a clear case of semantic similarity

- Text A: About 1,417 schools statewide receive Title I money.
- Text B: That applies only to schools that get federal Title I money.

A clear case when two texts are NOT semantically similar

The Importance of Assessing Semantic Similarity

Applications

- Question Answering Systems
 - compare the input question to a list of known questions

The Importance of Assessing Semantic Similarity

Applications

- Question Answering Systems
 - compare the input question to a list of known questions
- Dialogue-Based Tutoring Systems
 - compare student's answer to a list of known answers

The Importance of Assessing Semantic Similarity

Applications

- Question Answering Systems
 - compare the input question to a list of known questions
- Dialogue-Based Tutoring Systems
 - compare student's answer to a list of known answers
- Text-based Clustering and Classification
 - gather news articles about same story, event or person
 - cluster and classify retrieved documents by their topics

	Lexical Methods 0 00000000	Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
Contrib	outions				

- Investigate the role of linguistic information in assessing the semantic similarity of texts
- Propose a Semantic Representation to encode the meaning of natural language texts into structured computational representations
- Design, implement and test a variety of Methods on top of the semantic representation to automatically assess semantic similarity of texts
- Develop a general Framework for assessing the semantic similarity of texts

		Word-Semantics	Dependencies	Kernel Based Methods 0000000	Conclusions	Appendix 000000
Outline	`					

Outline

Introduction
Semantic Similarity in Short Texts
Previous Work
A Framework to Measure Semantic Similarity
A Shallow Representation of Meaning
Lexical Methods
A Simple Example
Methodology
Results
Word-Semantics
Word Semantics (WordNet, LSA)
Methodology
Results
Dependencies
Dependency Relations
Methodology
Results
Kernel Based Methods
Lexical Kernels
Methodology
Results
Conclusions

Appendix

Introduction		Word-Semantics	Kernel Based Methods 00000000	Conclusions	Appendix 000000
Outline	`				

イロン イヨン イヨン イヨン

3

6/45

Outline

Introduction

Previous Work A Framework to Measure Semantic Similarity A Shallow Representation of Meaning

Semantic Similarity in Short Texts

	Lexical Methods		Dependencies 000	Kernel Based Methods	Conclusions	Appendix 000000
The Pr	oblem Re	viewed				

- **Text A:** York had no problem with MTA's <u>insisting</u> the decision to shift funds had been within its legal rights.
- Text B: York had no problem with MTA's saying the decision to shift funds was within its powers.

Qualitative Judgement - Paraphrase

- Text A: About 1,417 schools statewide receive Title I money.
- Text B: That applies only to schools that get federal Title I money.

Qualitative Judgement - NOT Paraphrase

	Lexical Methods 0 00000000		Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
The Pr	oblem Re	viewed				

- **Text A:** York had no problem with MTA's <u>insisting</u> the decision to shift funds had been within its legal rights.
- Text B: York had no problem with MTA's saying the decision to shift funds was within its powers.

Quantitative Judgement - are similar to a degree of 0.9 (on a normalized scale)

Text A: About 1,417 schools statewide receive Title I money.

Text B: That applies only to schools that get federal Title I money.

Quantitative Judgement - are similar to a degree of 0.4 (on a normalized scale)

 $\mathsf{Quantitative\ Judgement} \Longrightarrow \mathsf{Qualitative\ Judgement}$

Introduction 0000000000		Word-Semantics 000000	Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
Why Q	uantitativ	e Analysi	S			

- Text A: Ricky Clemons 's brief, troubled Missouri basketball career is over.
- Text B: Missouri kicked Ricky Clemons off its team, ending his troubled career there.

	Lexical Methods		Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
Why Q	uantitativ	ve Analysi	S			

- **Text A:** Ricky Clemons 's brief, troubled Missouri basketball career is over.
- Text B: Missouri kicked Ricky Clemons off its team, ending his troubled career there.

Introduction 00000000000		Word-Semantics	Dependencies 000	Kernel Based Methods	Conclusions	Appendix 000000
Why Q	uantitativ	e Analysis	S			

- **Text A:** Ricky Clemons 's brief, troubled Missouri basketball career is over.
- Text B: Missouri kicked Ricky Clemons off its team, ending his troubled career there.

A paraphrase example from the Microsoft Research Paraphrase (MSR) Corpus Symmetric Relation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

8 / 45

			0000000	000000
Why (J	uantitativ	e Analysis		

- **Text A:** Ricky Clemons 's brief, troubled Missouri basketball career is over.
- Text B: Missouri kicked Ricky Clemons off its team, ending his troubled career there.

A paraphrase example from the Microsoft Research Paraphrase (MSR) Corpus
Symmetric Relation

Text A: There are also tanneries, sawmills, textile mills, food-processing plants, breweries, and a film industry in the city.

イロト 不得 トイヨト イヨト ニヨー

8 / 45

Text B: Movies are also made in the city

00000000000000000000000000000000000000				Kernel Based Methods 00000000		Appendix 000000
Why Quantitative Analysis						

- **Text A:** Ricky Clemons 's brief, troubled Missouri basketball career is over.
- Text B: Missouri kicked Ricky Clemons off its team, ending his troubled career there.

A paraphrase example from the Microsoft Research Paraphrase (MSR) Corpus
Symmetric Relation

- **Text A:** There are also tanneries, sawmills, textile mills, food-processing plants, breweries, and a film industry in the city.
- Text B: Movies are also made in the city

00000000000				Kernel Based Methods 00000000		000000
Why Quantitative Analysis						

- **Text A:** Ricky Clemons 's brief, troubled Missouri basketball career is over.
- Text B: Missouri kicked Ricky Clemons off its team, ending his troubled career there.

A *paraphrase* example from the Microsoft Research Paraphrase (MSR) Corpus
Symmetric Relation

- **Text A:** There are also tanneries, sawmills, textile mills, food-processing plants, breweries, and a film industry in the city.
- Text B: Movies are also made in the city

An entailment example from the Recognizing Textual Entailment (RTE) Corpus
Asymmetric Relation

		Word-Semantics		Kernel Based Methods 00000000	Conclusions	Appendix 000000
Challenges (which we address)			ress)			

Text A:	York had no problem with MTA's insisting the decision to
	shift funds had been within its legal rights.
Text B:	York had no problem with MTA's saying the decision to shift
	funds was within its powers.

A paraphrase example from the Microsoft Research (MSR) Paraphrase Corpus

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

9 / 45

	Lexical Methods			Kernel Based Methods 00000000	Conclusions	Appendix 000000
Challen	ges (whic	h we add	ress)			

Text A:	York had no problem with MTA's insisting the decision to
	shift funds had been within its legal rights.
Text B:	York had no problem with MTA's saying the decision to shift
	funds was within its powers.

A paraphrase example from the Microsoft Research (MSR) Paraphrase Corpus

Word-to-word Semantics

Introduction 000000000000000000000000000000000000			Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
Challen	ges (whic	h we addı	ress)			

Text A:	York had no problem with MTA's insisting the decision to
	shift funds had been within its legal rights.
Text B:	York had no problem with MTA's saying the decision to shift
	funds was within its powers.

A paraphrase example from the Microsoft Research (MSR) Paraphrase Corpus

Word-to-word Semantics

Example #2

- Text A: Besançon is the capital of France's watch and clock-making industry and of high precision engineering.
 Text B: Besançon is the capital of France's
- **Text B:** Besançon is the capital of France.

An non-entailment example from the Recognizing Textual Entailment (RTE-1) Corpus

Introduction 0000000000				Kernel Based Methods 00000000	Conclusions	Appendix 000000
Challen	ges (whic	h we addi	ress)			

Text A:	York had no problem with MTA's insisting the decision to
	shift funds had been within its legal rights.
Text B:	York had no problem with MTA's saying the decision to shift
	funds was within its powers

A paraphrase example from the Microsoft Research (MSR) Paraphrase Corpus

Word-to-word Semantics

Example #2

Text A: Besançon is the capital of France's watch and clock-making industry and of high precision engineering.
 Text B: Besançon is the capital of France.

An non-entailment example from the Recognizing Textual Entailment (RTE-1) Corpus

Syntactic Relations between words in a sentence

Challenges (which we do not address)

Example #3

Text A: That information was first reported in today's edition of the New York Times.Text B: The information was first printed yesterday in the New York Times.

	Lexical Methods 0 00000000			Kernel Based Methods 0000000	Conclusions	Appendix 000000	
Challenges (which we do not address)							

Text A:	That information was first reported in today's edition of the New York Times.
Text B:	

Introduction			Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
	7 1 *	1 1		1		

Challenges (which we do not address)

Example #3

- **Text A:** That information was first reported in today's edition of the New York Times.
- **Text B:** The information was first printed yesterday in the New York Times.

Need knowledge on: 1) Time

2) Printing business

Challenges (which we do not address)

Example #3

Text A:	That information was first reported in today's edition of the					
	New York Times.					

Text B: The information was first printed yesterday in the New York Times.

Need knowledge on: 1) Time

2) Printing business

Example #4

Text A:	John bought 3 apples and 2 pears.
T D	

Text B: John bought 5 fruits.

Need to know how to Add two integers (Mathematics)

The approach is based on the Principle of Compositionality

- the meaning of a text is determined by the meaning of its constituents and the rules used to combine them

(日) (四) (三) (三) (三)

11/45

words
numbers
punctuation

How do we compare two words?

Semantic Similarity between Words

• $dog \iff mutt$

Semantic Similarity between Words

$$\blacktriangleright \ dog \Longleftrightarrow mutt \quad \Longleftrightarrow animal$$

Semantic Similarity between Words

$$\bullet \ \, dog \Longleftrightarrow bark \quad \ \, apple \Longleftrightarrow pie$$

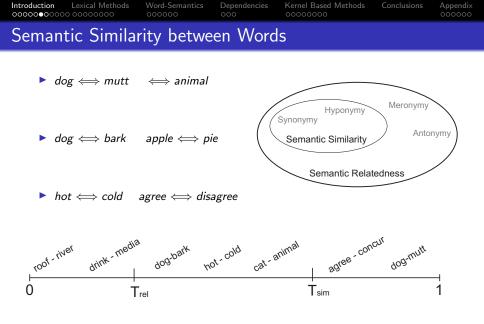
Semantic Similarity between Words

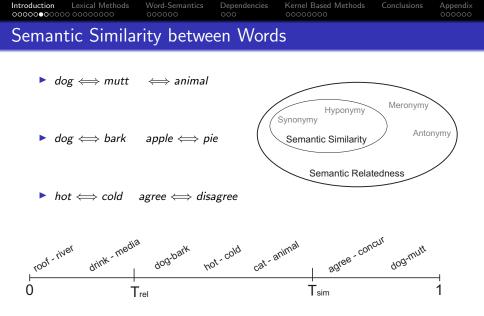
$$\bullet \ \ dog \Longleftrightarrow mutt \quad \Longleftrightarrow animal$$

Semantic Similarity between Words

$$\blacktriangleright \ dog \Longleftrightarrow mutt \quad \Longleftrightarrow animal$$

・ロ ・ ・ 一部 ・ く 言 ト く 言 ト こ の Q (や 12 / 45)





Semantic Similarity versus Semantic Agreement

・ロ ・ ・ 一部 ・ ・ 注 ・ ・ 注 ・ う Q (* 12 / 45

Semantic Similarity between Sentences

			Kernel Based Methods 00000000	Conclusions	Appendix 000000
C	 · · · · ·	<u> </u>			

Semantic Similarity between Sentences

Text A: The Dow finished the volatile day with a modest gain.

Text B: US stocks rose in volatile trading, thanks only to technical factors.

・ロト ・回ト ・ヨト ・ヨト

3

13/45

Same topic...

	Word-Semantics 000000		Kernel Based Methods 00000000	Conclusions	Appendix 000000
<u> </u>	 1. I. I.	<u> </u>			

Semantic Similarity between Sentences

Text A: The Dow finished the volatile day with a modest gain.

Text B: US stocks rose in volatile trading, thanks only to technical factors.

Same topic...

Text A:It is now time to bring our combat troops home from Afghanistan.Text B:NATO's secretary general argued against a retreat from
Afghanistan.

...but different opinions

			Kernel Based Methods 00000000	Conclusions	Appendix 000000
<u> </u>	 A	<u> </u>			

Semantic Similarity between Sentences

Text A: The Dow finished the volatile day with a modest gain.

Text B: US stocks rose in volatile trading, thanks only to technical factors.

Same topic...

Text A:It is now time to bring our combat troops home from Afghanistan.Text B:NATO's secretary general argued against a retreat from
Afghanistan.

...but different opinions

 $Words \implies Sentences \implies Paragraphs \implies Documents$

Introduction		Word-Semantics	Dependencies 000	Kernel Based Methods	Conclusions	Appendix 000000
Previou	ıs Work					

- Most Common Datasets
 - Recognizing Textual Entailment (RTE) Corpora (PASCAL, TAC)
 - The Microsoft Research (MSR) Paraphrase Corpus (Dolan 04)

	Lexical Methods	Dependencies	Kernel Based Methods 00000000	Conclusions	Appendix 000000
Previou	is Work				

- Most Common Datasets
 - Recognizing Textual Entailment (RTE) Corpora (PASCAL, TAC)
 - The Microsoft Research (MSR) Paraphrase Corpus (Dolan 04)
- A variety of methods
 - word-to-word semantics (Corley & Mihalcea, 05)
 - canonicalized texts (Zhang & Patrick, 05)
 - syntactic dependencies (Lintean & Rus 09, Malakasiotis 09)
 - quasi-synchronous grammars (Das & Smith, 2009)
 - machine translation evaluation metrics (Finch et.al 05, Wan et.al 09)

14 / 45

	Lexical Methods	Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
Previou	is Work				

- Most Common Datasets
 - Recognizing Textual Entailment (RTE) Corpora (PASCAL, TAC)
 - The Microsoft Research (MSR) Paraphrase Corpus (Dolan 04)
- A variety of methods
 - word-to-word semantics (Corley & Mihalcea, 05)
 - canonicalized texts (Zhang & Patrick, 05)
 - syntactic dependencies (Lintean & Rus 09, Malakasiotis 09)
 - quasi-synchronous grammars (Das & Smith, 2009)
 - machine translation evaluation metrics (Finch et.al 05, Wan et.al 09)
- Process outline
 - map the problem into a feature space
 - learn and classify (SVMs, decision trees, logistic regression)

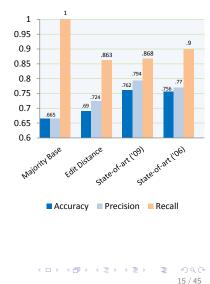
Our Dataset - The MSR Paraphrase Corpus

identify sentential paraphrases

- 5801 instance pairs 70% training (.67 T) 30% testing (.66 T)
- average sentence length: 17 words
- a challenging dataset inconsistent labeling 83% inter-rater agreement

The ULPC Corpus (2000 #instances) The RTE Corpus (4657 #instances)

Performance on MSR - test data



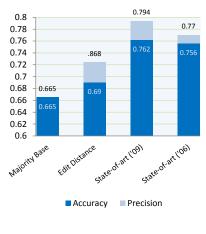
Our Dataset - The MSR Paraphrase Corpus

identify sentential paraphrases

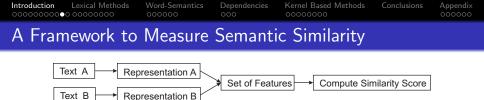
- 5801 instance pairs 70% training (.67 T) 30% testing (.66 T)
- average sentence length: 17 words
- a challenging dataset inconsistent labeling 83% inter-rater agreement

The ULPC Corpus (2000 #instances) The RTE Corpus (4657 #instances)

Performance on MSR - test data

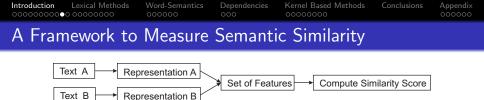


・・・・ ・・ミト・ミーシーミーの ・・・・ ・・・ ・・</



Our Goal: to offer a fully automated and robust process

- Step1: Semantic Mapping
 - covert the input into semantic representations
 - retain the Lexical, Syntax and Semantics

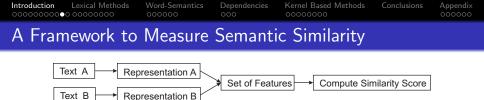


Our Goal: to offer a fully automated and robust process

- Step1: Semantic Mapping
 - covert the input into semantic representations
 - retain the Lexical, Syntax and Semantics

Step 2: Compare

- compare the representation
- extract features that quantify the semantic similarity



Our Goal: to offer a fully automated and robust process

- Step1: Semantic Mapping
 - covert the input into semantic representations
 - retain the Lexical, Syntax and Semantics
- Step 2: Compare
 - compare the representation
 - extract features that quantify the semantic similarity
- Step 3: Learn and classify
 - learn from the features
 - assess qualitatively the semantic similarity

• • • • • •

SR: (Word, Lemma, POS, Specificity, WN-SENSE|LSA-Vector, ($< -: dep_{type}: dep_{mod} > | < dep_{head}: dep_{type}: ->)+)+$

Peter went to Seattle last Thursday.

[(Word=Peter, lemma=peter, POS=NNP, WN_{SENSE}=1,Deps=(went:nsubj:-)), (went, go, VBP, 1, (-:nsubj:peter; -:prep_to:seattle; -:tmod:thursday)), (to, to, N, 1, ()), (Seattle, seattle, NNP, 1, (went:prep_to:-)), (last, last, JJ, 1, (thursday:amod:-)), (Thursday, thursday, NNP, 1, (went:tmod:-; -:amod:last))] (., ., PERIOD, 1, ())]

- Easy extraction of data
- Human friendly
- Encode all lexical, syntactic and semantic facts of the input

A Shallow Representation of Meaning

 $\begin{aligned} \mathsf{SR:} \ (\textit{ Word, Lemma, POS, Specificity, WN-SENSE}|\mathsf{LSA-Vector}, \\ (<-: dep_{type}: dep_{mod} > | < dep_{head}: dep_{type}: ->)+)+ \end{aligned}$

Preprocessing the Input

► Tokenize text ~→ lexical tokens (words)

 $\begin{aligned} \mathsf{SR:} \ (\textit{ Word, Lemma, POS, Specificity, WN-SENSE}|\mathsf{LSA-Vector}, \\ (<-: dep_{type}: dep_{mod} > | < dep_{head}: dep_{type}: ->)+)+ \end{aligned}$

Preprocessing the Input

- Tokenize text ~> lexical tokens (words)
- ► Lematize tokens ~→ lemmas

 $\begin{aligned} \mathsf{SR:} \ (\textit{ Word, Lemma, POS, Specificity, WN-SENSE}|\mathsf{LSA-Vector}, \\ (<-: dep_{type}: dep_{mod} > | < dep_{head}: dep_{type}: ->)+)+ \end{aligned}$

Preprocessing the Input

- Tokenize text ~> lexical tokens (words)
- Lematize tokens ~> lemmas
- ► Part-of-Speech Tagging ~→ POSs

 $\begin{aligned} \mathsf{SR:} \ (\textit{ Word, Lemma, POS, Specificity, WN-SENSE}|\mathsf{LSA-Vector}, \\ (<-: dep_{type}: dep_{mod} > | < dep_{head}: dep_{type}: ->)+)+ \end{aligned}$

Preprocessing the Input

- Tokenize text ~> lexical tokens (words)
- Lematize tokens ~> lemmas
- Part-of-Speech Tagging ~ POSs
- Extract Word Specificity from precalculated Indices (IDF, Entropy)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのの

17 / 45

 $\begin{aligned} \mathsf{SR:} \ (\textit{ Word, Lemma, POS, Specificity, WN-SENSE}|\mathsf{LSA-Vector}, \\ (<-: dep_{type}: dep_{mod} > | < dep_{head}: dep_{type}: ->)+)+ \end{aligned}$

Preprocessing the Input

- Tokenize text ~> lexical tokens (words)
- Lematize tokens ~> lemmas
- Part-of-Speech Tagging ~ POSs
- Extract Word Specificity from precalculated Indices (IDF, Entropy)
- ► Compute the Meaning of Words ~→ WordNet Sense LSA Vector

 $\begin{aligned} \mathsf{SR:} \ (\textit{ Word, Lemma, POS, Specificity, WN-SENSE}|\mathsf{LSA-Vector}, \\ (<-: dep_{type}: dep_{mod} > | < dep_{head}: dep_{type}: ->)+)+ \end{aligned}$

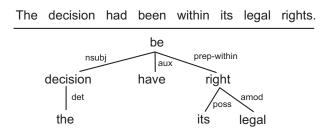
Preprocessing the Input

- ► Tokenize text ~→ lexical tokens (words)
- Lematize tokens ~> lemmas
- Part-of-Speech Tagging ~ POSs
- Extract Word Specificity from precalculated Indices (IDF, Entropy)
- ► Compute the Meaning of Words ~→ WordNet Sense LSA Vector
- ► Syntactic Parsing ~→ dependency relations between words

A Shallow Representation of Meaning

SR: (Word, Lemma, POS, Specificity, WN-SENSE|LSA-Vector, ($< -: dep_{type}: dep_{mod} > | < dep_{head}: dep_{type}: ->)+)+$

Extracting Dependencies



	Word-Semantics	Kernel Based Methods 00000000	Conclusions	Appendix 000000
0				

Outline

Semantic Similarity in Short Texts

Previous Work

A Framework to Measure Semantic Similarity

A Shallow Representation of Meaning

Lexical Methods

A Simple Example Methodology Results

Word-Semantics

Word Semantics (WordNet, LSA)

Methodology

Results

Dependencies

Dependency Relations Methodology Results

Kernel Based Methods

Lexical Kernels Methodology Results

Conclusions

Appendix

Introduction Lexical Methods Word-Semantics Dependencies Kernel Based Methods Conclusions Appendix

A Simple Method to Measure Similarity of Texts

Compute the degree of token overlap between the texts

Text A:	<u>Peter</u> went <u>to</u> <u>Seattle</u> <u>last</u> Thursday <u>.</u>
Text B:	Last Thursday, my friend Peter flew to Seattle for a business
	meeting <u>.</u>

- Number of common tokens = 6 (including punctuation)
- Average number of tokens $=\frac{7(TextA)+14(TextB)}{2}=10.5$
- Similarity Score: Sim = 6/10.5 = 0.57

イロト 不得 とくほと くほとう ほ

18/45

Introduction Lexical Methods Word-Semantics Dependencies Kernel Based Methods Conclusions Appendix

A Simple Method to Measure Similarity of Texts

Compute the degree of token overlap between the texts

Text A:	<u>Peter</u> went <u>to</u> <u>Seattle</u> <u>last</u> Thursday <u>.</u>
Text B:	Last Thursday, my friend Peter flew to Seattle for a business
	meeting <u>.</u>

- Number of common tokens = 6 (including punctuation)
- Average number of tokens = $\frac{7(TextA)+14(TextB)}{2} = 10.5$
- Similarity Score: Sim = 6/10.5 = 0.57
- Paraphrasing: Is Sim ≥ Threshold?
- ▶ Learn optimum threshold ← Maximum accuracy on training

Our process:

Step 1) Find all distinct pairs

Step 2) Count the pairs (or do a weighted sum)

Step 3) Normalize (use average or maximum length)

Ignore Puntuation

I am not a business man. I am a business, man.

Introduction Lexical Methods Word-Semantics Dependencies Kernel Based Methods Conclusions Appendix occocococo cooococo coococo cooococo coococo cooococo cooococo cooococo cooococo cooococo cooococococo cooococo coococo cooococo cooococo cooococo cooococo cooococo cooococo cooococo cooococo cooococo coococo cooco coococo coococo coococo coococo coococo coococo coococo cooco coococo cooco coococo cooco c

Decisions to Consider (when counting common tokens)

- Ignore Puntuation I am not a business man. I am a business, man.
- Consider only Content Words or Ignore Stop-Words

Text A:John is flying from Seattle.Text B:John is flying to Seattle.

Introduction Lexical Methods Word-Semantics Dependencies Kernel Based Methods Conclusions Appendi

Decisions to Consider (when counting common tokens)

- Ignore Puntuation I am not a business man. I am a business, man.
- Consider only Content Words or Ignore Stop-Words

Text A:John is flying from Seattle.Text B:John is flying to Seattle.

Compare base form

Text A:The children are playing in the courtyard.Text B:The child was playing in the courtyard.

Introduction Lexical Methods Word-Semantics Dependencies Kernel Based Methods Conclusions Appendic

Decisions to Consider (when counting common tokens)

- Ignore Puntuation I am not a business man. I am a business, man.
- Consider only Content Words or Ignore Stop-Words

Text A:John is flying from Seattle.Text B:John is flying to Seattle.

Compare base form

Text A:The children are playing in the courtyard.Text B:The child was playing in the courtyard.

Ignore Case

Text A:	People were having a good time.	Text A:	They made US proud.
Text B:	Most people were having a good time.	Text B:	They made us proud.

Introduction Lexical Methods Word-Semantics Dependencies Conclusions Appendia Cococococococo Cocococo Cocococo Decisions to Consider (when counting common tokens)

- Ignore Puntuation I am not a business man. I am a business, man.
- Consider only Content Words or Ignore Stop-Words

Text A:John is flying from Seattle.Text B:John is flying to Seattle.

Compare base form

Text A:	The children are playing in the courtyard.
Text B:	The child was playing in the courtyard.

Ignore Case

Text A:	People were having a good time.	Text A:	They made US proud.
Text B:	Most people were having a good time.	Text B:	They made us proud.

Compare with POS

Text A:	Trees line the riverbank.	Text A:	They had a pleasant walk in the park.
Text B:	The riverbank ends the line of trees.	Text B:	They pleasantly walked in the park.

- Ignore Puntuation I am not a business man. I am a business, man.
- Consider only Content Words or Ignore Stop-Words

Text A:John is flying from Seattle.Text B:John is flying to Seattle.

Compare base form

Text A:The children are playing in the courtyard.Text B:The child was playing in the courtyard.

Ignore Case

Text A:	People were having a good time.	Text A:	They made US proud.
Text B:	Most people were having a good time.	Text B:	They made us proud.

Compare with POS

Text A:	Trees line the riverbank.	Text A:	They had a pleasant walk in the park.
Text B:	The riverbank ends the line of trees.	Text B:	They pleasantly walked in the park.

Unigram versus Bigram overlap - pair bigrams of tokens

 Introduction
 Lexical Methods
 Word-Semantics
 Dependencies
 Kernel Based Methods
 Conclusions
 Appendix

 Observation
 Observation

- Ignore Puntuation I am not a business man. I am a business, man.
- Consider only Content Words or Ignore Stop-Words

Text A:John is flying from Seattle.Text B:John is flying to Seattle.

Compare base form

Text A:	The children are playing in the courtyard.
Text B:	The child was playing in the courtyard.

Ignore Case

Text A:	People were having a good time.	Text A:	They made US proud.
Text B:	Most people were having a good time.	Text B:	They made us proud.

Compare with POS

Text A:	Trees line the riverbank.	Text A:	They had a pleasant walk in the park.
Text B:	The riverbank ends the line of trees.	Text B:	They pleasantly walked in the park.

- Unigram versus Bigram overlap
 pair bigrams of tokens
- Weighting, Normalization

pair bigrams of tokens

Introduction Lexical Methods Word-Semantics Dependencies Kernel Based Methods Conclusions Append

Type of a Lexical Token (Unigram versus Bigram)

Text: To be or not to be

Unigrams

Number of tokens = 6

Number of token types = 4

Frequency of token type "be" = 2

Bigrams

Number of bigrams = 5

Number of bigram types = 4

Frequency of bigram type "to be" = 2

Introduction Lexical Methods Word-Semantics Dependencies Kernel Based Methods Conclusions Append Cocococo Coco-Coco Local and Global Weighting Schemas

$$w_{binary}(i,j) = \begin{cases} 1 & \text{if } i \in j \\ 0 & \text{if } i \notin j \end{cases}$$

Local Weighting

$$\mathit{Iw_{frequency}}(i,j) = \left\{ \begin{array}{cc} \mathit{tf_{ij}} & \textit{if} & i \in j \\ 0 & \textit{if} & i \notin j \end{array} \right.$$

 $lw_{logf}(i,j) = log[lw_{frequency}(i,j) + 1]$

- i = type of a lexical token
- $\boldsymbol{j}=\boldsymbol{a}$ text instance or a document
- $\mathsf{D}=\mathsf{a}$ collection of documents
- $tf_{ij} =$ frequency of i in j

Global Weighting

$$gw_{entropy}(i) = 1 + \sum_{j} rac{p_{ij} \log_2(p_{ij})}{\log_2(n)}$$
 , where $p_{ij} = rac{tf_{ij}}{\sum_{k \in D} tf_{ik}}$

$$gw_{idf}(i) = \log \frac{|D|}{\sum_{j \in D} w_{binary}(i,j)}$$

・ロ ・ ・ 日 ・ ・ 三 ・ ・ 三 ・ ク へ (* 21/45 Weighting Schemas in Semantic Similarity Assessment

 $weight(token) = weight_{local}(token) * weight_{global}(token)$

Local Weighting

- We use only binary (no local weight) and frequency
- For binary we compare the sets of token types (or n-gram types)
- For frequency we compare the sets of tokens (or n-grams)

Global Weighting

- We use binary (no global weight), entropy and idf
- Entropy available in the LSA space (built from TASA corpus)
- IDF we build our own IDF index from Wikipedia

Introduction 00000000000			Kernel Based Methods 00000000	Conclusions	Appendix 000000
	1.1				

Understanding the Results

- We show accuracy and precision ...
 - ... on both training and testing data
- We compare several methods in a graph (around 8 methods/graph)
- MethodName = (ST|OP) (P|W|C|S)(W|B|P)(C|I)(U|B)(I|E|N)(F|N)

 $({\sf ST}|{\sf OP})={\sf Stanford\ {\sf Processing}\ }|\ {\sf OpenNLP\ {\sf Processing}}$

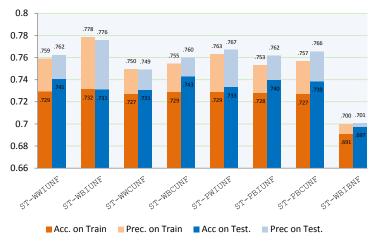
 $(\mathsf{P}|\mathsf{W}|\mathsf{C}|\mathsf{S}) = \mathsf{Punctuation} ~|~ \mathsf{Words} ~\mathsf{Only} ~|~ \mathsf{Content} ~\mathsf{Words} ~|~ \mathsf{No} ~\mathsf{Stop-Words}$

- $(\mathsf{W}|\mathsf{B}|\mathsf{P}) = \mathsf{Compare Words} \mid \mathsf{Lemmas} \mid \mathsf{Lemmas with POS}$
- $(\mathsf{C}|\mathsf{I}) = \mathsf{Case} \ \mathsf{Sensitive} \ | \ \mathsf{Case} \ \mathsf{Insensitive}$
- $(U|B) = Unigrams \mid Bigrams$
- (I|E|N) = Global Weighting (IDF | Entropy | NoWeight)
- (F|N) = Local Weighting (Frequency | NoWeight)

Example: ST-W.B.I.U.N.F

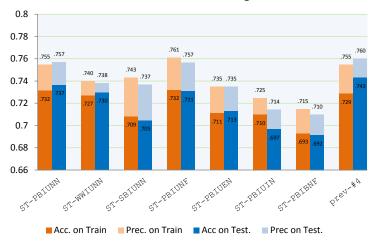
Results on Lexical Methods - 1

Lexical Methods with Max-Norm



Introduction Lexical Methods Word-Semantics Dependencies ocooocoocoo Conclusions Appendix ocoocoo Results on Lexical Methods - 2

Lexical Methods with Average-Norm



	000000	Kernel Based Methods 00000000	Appendix 000000

Outline

- Semantic Similarity in Short Texts
- **Previous Work**
- A Framework to Measure Semantic Similarity
- A Shallow Representation of Meaning

Lexical Methods

A Simple Example Methodology Results

Word-Semantics

Word Semantics (WordNet, LSA) Methodology Results

Dependencies

Dependency Relations Methodology Results

Kernel Based Methods

Lexical Kernels Methodology Results

Conclusions

Appendix

Motivation for Word-to-Word Similarity Metrics

Text A:	York had no problem with MTA's insisting the decision to shift
	funds had been within its legal rights.

Text B: York had no problem with MTA's saying the decision to shift funds was within its powers.

Motivation for Word-to-Word Similarity Metrics

Text A:	York had no problem with MTA's insisting the decision to shift funds had been within its legal rights.
Text B:	York had no problem with MTA's saying the decision to shift funds was within its powers.

We use WordNet Similarity and LSA-based metrics

insisting versus saying

W2W Metric	$insist \Leftrightarrow say$
WNS Path	0.333
WNS Lin	0.594
WNS Lch	0.670
WNS HSO	0.375
LSA	0.126

Motivation for Word-to-Word Similarity Metrics

Text A:	York had no problem with MTA's insisting the decision to shift
	funds had been within its legal rights.

Text B: York had no problem with MTA's saying the decision to shift funds was within its powers.

We use WordNet Similarity and LSA-based metrics

insisting versus saying

W2W Metric	$insist \Leftrightarrow say$
WNS Path	0.333
WNS Lin	0.594
WNS Lch	0.670
WNS HSO	0.375
LSA	0.126

- first, pair identical tokens
- then, pair words on $W2W \ge Th_{sim}$
- greedy vs. optimal matching
- Weight-sum the pairs on their W2W metric

		Word-Semantics ○●○○○○		Kernel Based Methods	Conclusions	Appendix 000000
Greedy	versus Op	ptimal Ma	atching			

Text A: My pet enjoys playing with your dog. Text B: My cat likes to play with your pet. Introduction Lexical Methods Conclusions Word-Semantics Conclusions Operation of the second second

Greedy versus Optimal Matching

Text A:My pet enjoys playing with your dog.Text B:My cat likes to play with your pet.

Greedy matching - Find the closest word

 $pet_A \Leftrightarrow pet_B \qquad dog_A \Leftrightarrow cat_B$

Introduction Lexical Methods October Optimal Matching Croady vorcus Optimal Matching

Greedy versus Optimal Matching

Text A:My pet enjoys playing with your dog.Text B:My cat likes to play with your pet.

Greedy matching - Find the closest word

 $pet_A \Leftrightarrow pet_B \qquad dog_A \Leftrightarrow cat_B$

Optimal matching - Find the optimal/correct pairing

- search for the best overall matching score (i.e. sum of all matched pairs)

 $pet_A \Leftrightarrow cat_B \qquad dog_A \Leftrightarrow pet_B$

Introduction Lexical Methods October Optimal Matching Croady warraus Optimal Matching

Greedy versus Optimal Matching

Text A:My pet enjoys playing with your dog.Text B:My cat likes to play with your pet.

Greedy matching - Find the closest word

 $pet_A \Leftrightarrow pet_B \qquad dog_A \Leftrightarrow cat_B$

Optimal matching - Find the optimal/correct pairing

- search for the best overall matching score (i.e. sum of all matched pairs)

 $pet_A \Leftrightarrow cat_B \qquad dog_A \Leftrightarrow pet_B$

The Assignment Problem

- solvable in polynomial time (The Hungarian Algorithm)

Introduction Lexical Methods

Word-Semantics

Dependencies 000 Kernel Based Methods 00000000

28 / 45

nclusions App

Computing Similarity for W2W Methods

Symmetric Similarity $(A \Leftrightarrow B)$

$$Sim_{W2W}(A,B) = \frac{2*\sum_{w_A \in A, w_B \in B(paired)} \frac{weight(w_A) + weight(w_B)}{2} W2W(w_A, w_B)}{\sum_{w \in A} weight(w) + \sum_{w \in B} weight(w)}$$
(1)

Word-Semantics

Dependencies

Kernel Based Methods 0

ns Append

Computing Similarity for W2W Methods

Symmetric Similarity
$$(A \Leftrightarrow B)$$

$$Sim_{W2W}(A,B) = \frac{2*\sum_{w_A \in A, w_B \in B(paired)} \frac{weight(w_A) + weight(w_B)}{2} W2W(w_A, w_B)}{\sum_{w \in A} weight(w) + \sum_{w \in B} weight(w)}$$
(1)

Normalization on Maximum Length (Max-Norm) $(A \Leftrightarrow B)$

$$Sim_{W2W}(A,B) = \frac{\sum_{w_A \in A, w_B \in B(paired)} \frac{weight(w_A) + weight(w_B)}{2} W2W(w_A, w_B)}{Max(\sum_{w \in A} weight(w), \sum_{w \in B} weight(w))}$$
(2)

Word-Semantics

Dependencies 000 Kernel Based Methods 0

s Appendi 00000

Computing Similarity for W2W Methods

Symmetric Similarity
$$(A \Leftrightarrow B)$$

$$Sim_{W2W}(A,B) = \frac{2*\sum_{w_A \in A, w_B \in B(paired)} \frac{weight(w_A) + weight(w_B)}{2} W2W(w_A, w_B)}{\sum_{w \in A} weight(w) + \sum_{w \in B} weight(w)}$$
(1)

Normalization on Maximum Length (Max-Norm)
$$(A \Leftrightarrow B)$$

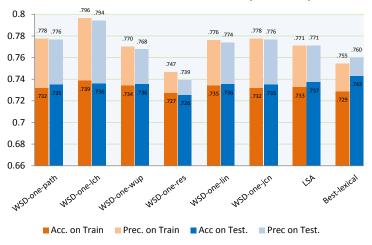
$$Sim_{W2W}(A,B) = \frac{\sum_{w_A \in A, w_B \in B(paired)} \frac{weight(w_A) + weight(w_B)}{2} W2W(w_A, w_B)}{Max(\sum_{w \in A} weight(w), \sum_{w \in B} weight(w))}$$
(2)

$$\underline{Asymmetric Similarity (A \Rightarrow B)}$$

$$Sim_{W2W}(A, B) = \frac{\sum_{w_A \in A, w_B \in B(paired)} \frac{weight(w_A) + weight(w_B)}{2} W2W(w_A, w_B)}{\sum_{w \in B} weight(w)}$$
(3)

Results on W2W Methods - 1

W2W Methods with Max-Norm (WSD-one)



◆□ → ◆□ → ◆ ■ → ◆ ■ → ○ へ ○
29 / 45

Results on W2W Methods - 2

W2W Methods with Max-Norm (WSD-all)



<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > 目 の Q (~ 30 / 45

Extra Work Detailed in Chapter 4

Evaluate WordNet Relatedness Measures

- Experiment with the ULPC dataset
- Compare between using: all senses vs. first sense of words
- Evaluate the IDF weighting schema

Extra Work Detailed in Chapter 4

Evaluate WordNet Relatedness Measures

- Experiment with the ULPC dataset
- Compare between using: all senses vs. first sense of words
- Evaluate the IDF weighting schema

Evaluate LSA vectorial-based metrics

- Experiment on MSR, ULPC and PKA datasets
- In PKA we work with paragraphs instead of sentences
- Compare between using different local and global weighting

Introduction 00000000000	Word-Semantics 000000	Dependencies	Kernel Based Methods 00000000	Conclusions	Appendix 000000
Outline					

<ロ> <同> <同> < 回> < 回>

э

31 / 45

Dependencies

Dependency Relations Methodology Results

0000000000	0000000	000000	•00	Kernel Based Methods 00000000		000000		
Using Dependency Relations								

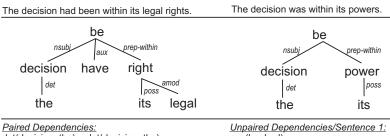
- **Text A:** The man chased the dog.
- Text B: The man was chased by the dog.

Text A: man is subject of chase

Text B: dog is subject of chase

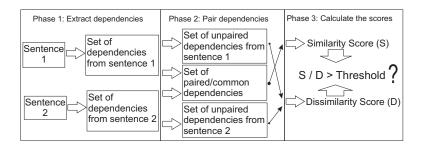
) and an dam	av Dalatia				
	Word-Semantics	Kernel Based Methods 00000000	Conclusions	Appendix 000000	

Using Dependency Relations



det(decision, the) = det(decision, the) nsubj(be, decision) = nsubj(be, decision) poss(power, its) = poss(right, its) prep_within(be, power) = prep_within(be, right) <u>Unpaired Dependencies/Sentence 1:</u> aux(be, had) amod(right-n, legal-a) <u>Unpaired Dependencies/Sentence 2:</u> EMPTY

Computing Dep Similarity Score



$$sim(S_1, S_2) = \sum_{d_1 \in S_1} max_{d_2 \in S_2^*} [d2dSim(d_1, d_2)]$$

 $diss(S_1, S_2) = \sum_{d_1 \in unpS_1} weight(d_1) + \sum_{d_2 \in unpS_2} weight(d_2)$

 $Sim_{dep} = sim(S_1, S_2)/diss(S_1, S_2)$

Results with Dependency-based Methods (on MSR)

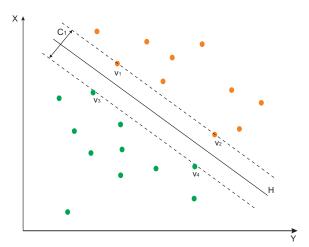
System	Acc.	Prec.	Recall	F-score
Uniform baseline	0.6649	0.6649	1.0000	0.7987
Random baseline (Corley&Mihalcea'05)	0.5130	0.6830	0.5000	0.5780
Lexical baseline (Zhang&Patrick'05)	0.7230	0.7880	0.7980	0.7930
Corley and Mihalcea (2005)	0.7150	0.7230	0.9250	0.8120
Qiu (2006)	0.7200	0.7250	0.9340	0.8160
Rus (2008) - average	0.7061	0.7207	0.9111	0.8048
Simple dep. overlap (Minipar)	0.6939	0.7109	0.9093	0.7979
Simple dep. overlap (Stanford)	0.6823	0.7064	0.8936	0.7890
Optimum results (Minipar)	0.7206	0.7404	0.8928	0.8095
Optimum results (Stanford)	0.7101	0.7270	0.9032	0.8056
No word semantics (Minipar)	0.7038	0.7184	0.9119	0.8037
No word semantics (Stanford)	0.7032	0.7237	0.8954	0.8005
No dependency weighting (Minipar)	0.7177	0.7378	0.8928	0.8079
No dependency weighting (Stanford)	0.7067	0.7265	0.8963	0.8025
No penalty for extra info (Minipar)	0.7067	0.7275	0.8936	0.8020
No penalty for extra info (Stanford)	0.7032	0.7138	0.9241	0.8055

Introduction	Word-Semantics	Dependencies 000	Kernel Based Methods	Conclusions	Appendix 000000
0					

Outline

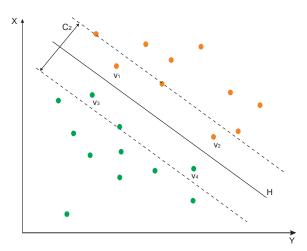
A Framework to Measure Semantic Similarity	
A Shallow Representation of Meaning	
Lexical Methods	
A Simple Example	
Methodology	
Results	
Word-Semantics	
Word Semantics (WordNet, LSA)	
Methodology	
Results	
Dependencies	
Dependency Relations	
Methodology	
Results	
Kernel Based Methods	
Lexical Kernels	
Methodology	
Results	
Appendix	・ロ・・四・・ヨ・・ヨ・ シック
	34 / 45

Principle of Support Vector Machines



・ロ ・ ・ 日 ・ ・ 言 ・ く 言 ・ こ ・ う へ (~ 35 / 45

Principle of Support Vector Machines



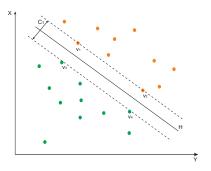
Kernels for Support Vector Machines

What if data is not linearly separable?

Kernels for Support Vector Machines

What if data is not linearly separable?

- SVM rely only on the proximity between points ⇒ Kernel functions
- The linear kernel: $K_{linear}(x, y) = (x \cdot y)$



イロト イポト イヨト イヨト

36 / 45

Kernels for Support Vector Machines

What if data is not linearly separable?

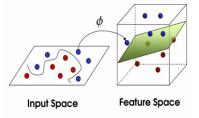
- SVM rely only on the proximity between points ⇒ Kernel functions
- The linear kernel: $K_{linear}(x, y) = (x \cdot y)$
- Valid kernels map data in new spaces, of any number of desired dimensions



Kernels for Support Vector Machines

What if data is not linearly separable?

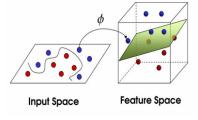
- SVM rely only on the proximity between points ⇒ Kernel functions
- The linear kernel: $K_{linear}(x, y) = (x \cdot y)$
- Valid kernels map data in new spaces, of any number of desired dimensions
- No need to represent data in the new space. Use only the kernel function



Kernels for Support Vector Machines

What if data is not linearly separable?

- SVM rely only on the proximity between points ⇒ Kernel functions
- The linear kernel: $K_{linear}(x, y) = (x \cdot y)$
- Valid kernels map data in new spaces, of any number of desired dimensions
- No need to represent data in the new space. Use only the kernel function



Classic Kernel functions

polynomial radial basis two layer sigmoid
$$\begin{split} & \mathcal{K}_{poly}(x,y) = (x \cdot y + coef)^d \\ & \mathcal{K}_{rad}(x,y) = exp(-\gamma ||x-y||)^2 \\ & \mathcal{K}_{sig}(x,y) = tanh(\gamma xy + coef) \end{split}$$

	Lexical Methods		Kernel Based Methods 00●00000	Conclusions	Appendix 000000
String	Kernels				

Why kernels in NLP

Language processing tasks are highly dimensional

 \Rightarrow Every word counts (and is often used as a dimension)

Kernel functions are very helpful in dealing with highly dimensional problems
 String kernels define a dimensions for each word in the vocabulary

A classic string kernel

 $K_{string}(A, B) =$ number of common words between A and B

- Data points are instances of pairs (there are two sentences per pair)
- How to measure the proximity of two instances, A and B

 C_A/D_A = set of common /different words in instance A C_B/D_B = set of common/different words in instance B

 $K_{simm}(A, B) =$ number of common words between C_A and C_B $K_{diss}(A, B) =$ number of common words between D_A and D_B $K_{DisSim}(A, B) = K_{diss}(A, B) + K_{simm}(A, B)$

What do we compare

we use words, lemmas, parts-or-speech or dependency paths

38 / 45

Introduction 00000000000		Kernel Based Methods ○○○○●○○○	Conclusions	Appendix 000000

How does a dissimilarity kernel work?

Text A1:Mary went to the doctor yesterday.Text A2:I saw Mary going to the doctor the other day.

Text B_1 : Josh bought some shoes from the mall.

Text *B*₂**:** I saw Josh buying some shoes at the mall the other day.

How does a dissimilarity kernel work?

Text A_1 :	Mary went to the doctor yesterday.
Text A_2 :	I saw Mary going to the doctor the other day.

Text B_1 : Josh bought some shoes from the mall. **Text** B_2 : I saw Josh buying some shoes at the mall the other day.

 $D_A = ($ yesterday, I, saw, the, other, day)

 $D_B = (I, \text{ saw, the, other, day})$

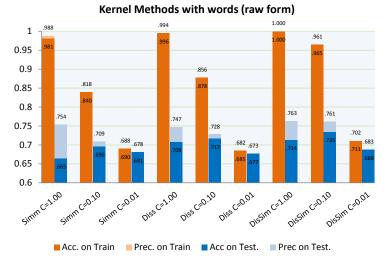
 $\implies K_{diss}(A, B) = 5$

(ロ) (四) (三) (三) (三)

39 / 45

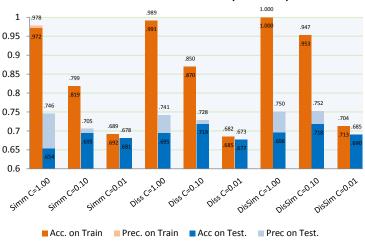
Introduction Lexical Methods Word-Semantics Dependencies Kernel Based Methods Conclusions Appendix

Results on Kernel Methods - 1



Introduction Lexical Methods Word-Semantics Dependencies Kernel Based Methods Conclusions Appendix

Results on Kernel Methods - 2



Kernel Methods with lemmas (base form)

・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ の へ ()
41/45

Introduction Lexical Methods Word-Semantics Dependencies oco Results on Kernel Methods - 3

Kernel Methods with parts-of-speech (POS)

Introduction 00000000000	Word-Semantics 000000	Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
Outline					

<ロ> <同> <同> < 回> < 回>

э

42 / 45

Conclusions

Introduction 0000000000		Word-Semantics	Kernel Based Methods 00000000	Conclusions	Appendix 000000
Conclu	sions				

- We explored the role of various levels of linguistic information (lexical, syntactic and semantic) on the task of semantic similarity assessment.
- We showed that simple methods (i.e. token overlap), are much more complex than they are usually addressed in the literature, and we addressed this problem by proposing a framework that allows the exploration of a large parameter space for simple overlap methods.
- We explored a range of methods from simple token overlap to optimum word-based similarity methods to kernel-based methods.
- There is need for better corpora to study the task of semantic similarity assessment, as existing corpora have significant limitations and can be misleading with respect to the potential of various methods addressing the task of semantic similarity.

Introduction 00000000000		Word-Semantics	Dependencies 000	Kernel Based Methods	Conclusions	Appendix 000000
Future	Work					

- improve the kernel methods \rightarrow asymmetric similarity
- explore more ways to use the framework
- do qualitative analysis on the output of methods

Publica				000000
Introduction		Kernel Based Methods	Conclusions	Appendix 000000

Journal Publications

Lintean, M., & Rus, V. (2010). Paraphrase Identification Using Weighted Dependencies and Word Semantics. Informatica, An International Journal of Computing and Informatics.

Conference Proceedings

- Lintean, M, & Rus, V. (2011). Dissimilarity Kernels for Paraphrase Identification. Proceedings of the 24th International Florida Artificial Intelligence Research Society Conference. Palm Beach, FL.
- Lintean, M, & Rus, V. (2010). The Role of Local and Global Weighting in Assessing The Semantic Similarity of Texts using Latent Semantic Analysis. Proceedings of the 23rd International Florida Artificial Intelligence Research Society Conference. Daytona Beach, FL.
- Lintean, M, Rus, V., Graesser, A., & McNamara, D. (2009). Assessing Student Paraphrases Using Lexical Semantics and Word Weighting. Proceedings of the 14th International Conference on Artificial Intelligence in Education. Brighton, UK.
- Lintean, M, & Rus, V. (2010). Paraphrase Identification Using Weighted Dependencies and Word Semantics. Proceedings of the 22nd International Florida Artificial Intelligence Research Society Conference. Sanibel Island, FL.
- Lintean, M, & Rus, V. (2010). Using Dependency Relations to Decide Paraphrasing. Proceedings of the Society for Text and Discourse Conference. Memphis, TN.

Introduction 00000000000	Word-Semantics 000000	Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix 000000
Outline					

<ロ> <同> <同> < 回> < 回>

э

45 / 45

Appendix

	Lexical Methods		Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix •00000
Accura	cy, Precisi	ion, Recal	I			

Confusion Matrix

Actual \ Predicted	False	True
False	A	В
True	С	D

$$Accuracy = \frac{A+D}{A+B+C+D}$$

$$Precision = \frac{D}{B+D}$$

$$Recall = \frac{D}{C+D}$$

 $\textit{Actual}_{\textit{true}} > \textit{Actual}_{\textit{false}} \quad \Rightarrow \quad \textit{Accuracy} \leq \textit{Precision}$

 $Predicted_{true} < Actual_{true}$

F						
						00000
Introduction	Lexical Methods	Word-Semantics	Dependencies	Kernel Based Methods	Conclusions	Appendix

Formulas of Lexical Overlap

Weighted Similarity

$$WSim(A, B) = \frac{2 * \sum_{w \in C} [weight_{global}(w) * weight_{local}(w)]}{\sum_{w \in A \uplus B} [weight_{global}(w) * weight_{local}(w)]}$$
(4)

Asymmetric Similarity

$$WSim(A, B) = \frac{\sum_{w \in C} [weight_{global}(w) * weight_{local}(w)]}{\sum_{w \in B} [weight_{global}(w) * weight_{local}(w)]}$$
(5)

Normalization on Maximum Length

$$WSim(T_1, T_2) = \frac{\sum_{w \in C} [weight_{global}(w) * weight_{local}(w)]}{Max(\sum_{w \in A|w \in B} [weight_{global}(w) * weight_{local}(w)])}$$
(6)

Introduction Lexical Methods Word-Semantics Dependencies Conclusions Appendix Conclusions Appendix Conclusions Appendix Conclusions Appendix Conclusions Appendix Conclusions Appendix Conclusions Con

Lexical methods on MSR, with Stanford parsing and Max-Norm

		Perfor	mance or	n Train	Performance on Test		
Method	Threshold	Acc.	Prec.	Recall	Acc.	Prec.	Recall
W.W.I.U.N.F.	.4828	.7294	.7589	.8783	.7409	.7624	.8867
W.B.I.U.N.F.	.5263	.7316	.7783	.8427	.7310	.7756	.8378
W.W.C.U.N.F.	.4615	.7274	.7497	.8954	.7310	.7491	.8954
W.B.C.U.N.F.	.5000	.7289	.7546	.8870	.7432	.7600	.8971
P.W.I.U.N.F.	.5238	.7291	.7632	.8685	.7333	.7669	.8605
P.B.I.U.N.F.	.5238	.7282	.7533	.8885	.7397	.7616	.8858
P.B.C.U.N.F.	.5238	.7269	.7567	.8780	.7386	.7656	.8745
W.B.I.B.N.F.	.1818	.6911	.7001	.9495	.6974	.7007	.9512

	Lexical Methods 0 00000000		Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix ○○○●○○
Mercer	's Theore	m				

A valid kernel must respect Mercer's condition

$$\int \int K(x,y)g(x)g(y)dxdy \ge 0 \tag{7}$$

A symmetric continuos, non-negative definite function

$$\sum_{i=1}^{n} sum_{j=1}^{n} K(x_i, x_j)c_ic_j \ge 0$$
(8)

 Introduction Lexical Methods Word-Semantics Dependencies Kernel Based Methods Conclusions Appendix

The Vapnik Chervonenkis (VC) dimension

The Empirical Risk

$$R_{emp}(\alpha) = \frac{1}{2I} \sum_{i=1}^{I} |y_i - f(x_i, \alpha)|$$
(9)

The Calculated Risk Bound

$$R(\alpha) = \int \frac{1}{2} |y - f(x, \alpha)| dP(x, y)$$
(10)

The VC dimension (h > 0)

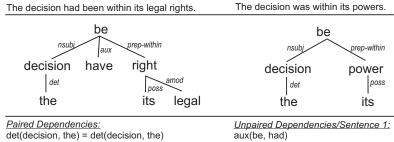
$$R(\alpha) \le R_{emp}(\alpha) + \sqrt{\frac{h(\log(2I/h) + 1) - \log(\mu/4)}{I}}$$
(11)

45 / 45

D	D.				
	Lexical Methods	Dependencies 000	Kernel Based Methods 00000000	Conclusions	Appendix ○○○○○●

Dependency Based Kernels

We also experimented with Dependecy-based kernels



nsubj(be, decision) = nsubj(be, decision) poss(power, its) = poss(right, its) prep_within(be, power) = prep_within(be, right) aux(be, had) amod(right-n, legal-a) <u>Unpaired Dependencies/Sentence 2:</u> EMPTY

Common subpaths:

 $\begin{array}{l} be \rightarrow decision \rightarrow the \\ be \rightarrow decision; decision \rightarrow the \\ its; be; decision; the \end{array}$